Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Muneyoshi Iyota
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 430-435, October 24–26, 2017,
Abstract
View Paper
PDF
Blade curving due to quenching in the Japanese sword has been recognized by swordsmiths through the ages. In the late 1920s, Hattori noted that the sword curving is induced from not only martensitic transformation expansion in the near-edge region but also non-uniform elastic and plastic strains distributed in the section, based on his experimental results using cylindrical specimens. Our research for an updated explanation on the subject prepared Japanese sword (JS) type specimens made of the same steel and process as the Japanese sword, and model JS (MJS) type specimens with the almost same shape as the JS type specimens, which were machined from commercial carbon steel and austenite stainless steel bars. All specimens quenched by a swordsmith using the traditional way showed a usual curved shape with different curvatures. Curving, temperature, hardness, metallic structure and residual stress measurements for the specimens were performed to prepare their future simulation works.