Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Mikhail I. Mendelev
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Molecular Dynamics Simulations of Microstructural Effects on Austenite-Martensite Interfaces in NiTi
SMST2024, SMST 2024: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies, 78-79, May 6–10, 2024,
Abstract
View Papertitled, Molecular Dynamics Simulations of Microstructural Effects on Austenite-Martensite Interfaces in NiTi
View
PDF
for content titled, Molecular Dynamics Simulations of Microstructural Effects on Austenite-Martensite Interfaces in NiTi
The formation and migration of austenite-martensite interfaces plays a key role in the reversible martensitic transformations of shape memory alloys (SMAs). How these interfaces interact with the SMA microstructure is a primary determining factor in important functional properties such as hysteresis and transformation span. Therefore, successful microstructural engineering of SMAs requires in-depth knowledge of interface behavior. The rapid nature of martensitic transformations makes experimental observations of moving interfaces challenging. Molecular dynamics (MD) simulation is a unique tool which can probe the atomic-scale details of austenite-martensite interfaces as they migrate and interact with different microstructural features. While MD simulations allow access to atomic-scale mechanisms, they are limited in time scale, typically to nanoseconds. This limitation creates problems when focusing on the entire transformation process in SMAs, specifically nucleation of new phases. To trigger nucleation on the nanosecond time scale, MD simulations must be performed so far from equilibrium that their relevance to experiment becomes questionable. Here, we demonstrate new MD simulation techniques to generate energetically preferred austenite-martensite interfaces in NiTi under near-equilibrium conditions. We then take advantage of this approach to probe interface behavior under conditions relevant to experiments. Our results demonstrate how austenite-martensite interfaces behave with dramatic differences in single crystals compared to more realistic microstructures containing features such as grain boundaries and precipitates. We identify trends in interface behavior which can be utilized to inform microstructural engineering approaches for SMAs.