Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Michael Allen Rodder
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 295-299, November 12–16, 2023,
Abstract
View Papertitled, Defect Isolation in Advanced Nodes Large Circuitry Structures using a Combination of FIB Circuit Edits and Passive Voltage Contrast
View
PDF
for content titled, Defect Isolation in Advanced Nodes Large Circuitry Structures using a Combination of FIB Circuit Edits and Passive Voltage Contrast
In this paper, we discuss and showcase a 2-step defect isolation methodology by combining Focused Ion Beam “circuit editing” (FIB circuit edit) and Passive Voltage Contrast (PVC) imaging. The combo technique is an effective, robust, and time saving method for isolating defects in large area circuit structures for advanced nodes. The application of FIB circuit edits successfully enhanced the PVC efficiency in defect isolation. More importantly, the developed 2-step methodology improves failure analysis (FA) success rate and quality, and reduces FA turn-aroundtime (TAT).