Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
Masatsugu Yaguchi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 960-968, October 15–18, 2024,
Abstract
View Paper
PDF
This study evaluates various nondestructive testing methods for detecting creep damage and assessing residual life in Grade 91 steel welds. Three primary detection techniques were investigated: phased array ultrasonic testing (PAUT), eddy current testing with high-temperature superconductor direct current and superconducting quantum interference device (ECT•HTS-dc-SQUID), and replica observation. PAUT detected creep damage between 60-80% of creep life, while ECT•HTS-dc-SQUID showed detection capability between 80-90% of creep life. Replica observation revealed creep voids only in the final stages before rupture. Additionally, three strain measurement methods were evaluated: capacitive strain sensors (providing continuous monitoring during creep exposure), laser displacement meters (used during test interruptions), and SPICA strain measurement. Both capacitive sensors and laser meters produced results comparable to conventional extensometer measurements. The SPICA method proved particularly effective in measuring heat-affected zone (HAZ) strain after creep exposure, revealing higher strain values in the HAZ compared to base and weld metal, with a consistent increase during creep exposure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1216-1227, October 15–18, 2024,
Abstract
View Paper
PDF
The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding chemical composition, only the Al, Cr, and Ni contents were systematically varied while keeping the contents of the other elements and heat treatment conditions constant. Regarding heat treatment, the normalizing and tempering temperatures were varied while keeping the contents of chemical components constant. The creep tests of materials were performed for approximately up to 50,000 h at 650°C. The creep strength of Grade 91 type steel decreased with increasing Al content under the test conditions of short-term to long-term range. On the other hand, the effect of Cr content on the creep life of Grade 91 type steel depended on the stress or time range, and the creep strength of the steel decreased at high Cr contents under test conditions of only the longterm range. No effect of Ni content on the creep life of the materials was observed in the test data obtained in this study. As creep tests are currently being conducted at 625°C and 60 MPa, which are conditions closer to the actual service conditions of main steam piping at ultra-super critical power plants, the creep deformation data at present indicate that the above trends hold true in the long-term range. Regarding the effect of heat treatment, the creep life of the materials tended to increase with increasing normalizing temperature or decreasing tempering temperature. The results obtained in this work indicate that within the scope of the material standards for Grade 91 type steel, the effect of chemical composition on creep life is greater than that of heat treatment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1228-1239, October 15–18, 2024,
Abstract
View Paper
PDF
The creep strength of the base metals and welded joints of ASME Grade 91 type steel under actual service conditions was investigated using long-term used materials in this study. Creep tests were conducted on the materials used for hot reheat or main steam piping at power plants. The remaining creep life of each material under actual service conditions was evaluated using the Larson-Miller parameter for the test result. Then, the creep life of each material under the service condition was estimated as a summation of the service time at the plants and the remaining creep life. The estimation results were useful for examining the validity of the life evaluation formula in the long-term region because it is extremely difficult to obtain creep rupture data under such conditions owing to the long test duration. The estimated creep lives were compared with creep life evaluation curves, which were regulated for Grade 91 type steel in Japan. Regarding the base metals, the estimation results suggest that Grade 91 pipe-type steel tends to exhibit a shorter life than the 99% confidence lower limit of the evaluation curve of the material. This finding indicated that the life evaluation formula for the Grade 91 type steel base metals should be reviewed. On the other hand, the estimation results suggest that the welded joints of Grade 91 type steel generally exhibit a longer life than the 99% confidence lower limit of the evaluation curve of the material, indicating that there is no need to review the life evaluation formula for the Grade 91 type steel welded joints.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1289-1299, October 15–18, 2024,
Abstract
View Paper
PDF
Creep deformation and rupture properties of several long-term used Super 304H steel boiler tubes were presented in this paper. The aged superheater tubes that have been in service for about 140,000 hours at the approximate metal temperature ranged from 550°C to 640°C, were investigated. Creep tests were conducted at 650°C and 700°C using standard and miniature specimens taken from the axial and circumferential directions of tubes, and effects of specimen size, sampling direction and position on creep properties were discussed. Creep deformation of long-term used materials with significant microstructural evolution accelerated earlier than that of virgin material, and the time to creep rupture and the fracture ductility were also smaller. The degradation of rupture properties of the long-term used material was discussed in relation with microstructural evolution. In addition, there was little effects of specimen size and sampling direction on creep deformation and rupture time, whereas the time to creep rupture changed significantly due to the sampling position.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1322-1329, October 21–24, 2019,
Abstract
View Paper
PDF
The effect of taking miniature sample scoops on the creep life of ASME Grade 91 steel pipes was experimentally and analytically assessed in this work. Internal pressure tests were conducted on tubular specimens having defects on their outer surface, which simulate sampling scoops. The creep life did not decrease until the depth ratio of the defect to the wall thickness of the specimens was about 5%, and the creep life decreased with increasing defect depth when the depth ratio exceeded about 5%. When the depth ratio was about 11%, the creep life decreased to four-fifths of that of a specimen with no defects. In addition, as a result of investigating the stress concentration around a defect with a depth ratio of about 5% by the finite element method, stress concentration was clearly observed around the defect. These results suggest that taking a miniature sample up to a depth of 5% of the thickness of a Grade 91 steel pipe in service has a negligible effect on the creep life of the pipe.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 446-457, October 11–14, 2016,
Abstract
View Paper
PDF
ASME Grade 91 steel seam-welded elbow pipe, which has been used in a USC plant (A-Plant) for about 6 × 10 4 h, was investigated to clarify the microstructure and remaining creep life of the material at long-term region. SEM and TEM observations were conducted on specimens cut from the welded portions of the intrados and extrados of the elbow, and the number density of creep voids in fine-grained HAZ was measured in the wall-thickness direction. Then, creep rupture tests were performed to examine the remaining life of each portion of the base metal and welded joint. On the basis of the results, it was suggested that the microstructural changes were small and that the cumulative creep damage was also small for the elbow pipe during its use at the USC plant for about 6 × 10 4 h. The present result was compared with the result of an investigation on Grade 91 steel elbow used in another USC plant (B-Plant) for about 5 × 10 4 h. The A-Plant material had a creep life about ten times longer than that of the B-Plant material for not only the base metals but also the welded joint. Through the comparison of the investigation results, it was suggested that the difference in the creep deformation property between the base metals of the elbows was the main reason for the difference in their creep lives.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1170-1181, October 11–14, 2016,
Abstract
View Paper
PDF
Type IV damage is observed in creep-strength-enhanced ferritic (CSEF) steel used in USC plants and the research on the evaluation of such damage has been carried out in the world. Type I failure is recently reported in welded joint of Gr.91 so that the importance of the evaluation of the creep strength of the weld metal is increasing. In this study, the change in hardness with aging and creep strength before and after aging were evaluated to determine the creep strength of the weld metal of Gr.91. The hardness of the weld metal subjected to aging significantly decreased compared with that of the base metal and the heat-affected zone (HAZ). The creep strength of the weld metal was also decreased by aging. From these results, it is suggested that the failure morphology of Gr.91 steel welded joint used for a long term may change from type IV to type I.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 690-701, October 22–25, 2013,
Abstract
View Paper
PDF
Type IV damage was found at several ultra-supercritical (USC) plants that used creep-strength-enhanced ferritic (CSEF) steels in Japan, and the assessment of the remaining life of the CSEF steels is important for electric power companies. However, there has been little research on the remaining life of material that has actually served at a plant. In this study, the damage and remaining life of a Gr.91 welded elbow pipe that served for 54,000 h at a USC plant were investigated. First, microscopic observation and hardness testing were conducted on specimen cut from the welded joint; the results indicated that the damage to the elbow was more severe in the fine-grain heat-affected zone near the inner surface. Furthermore, creep rupture tests were performed using specimens cut from the welded joint of the elbow, and from these results, the remaining life was evaluated using the time fraction rule as almost 110,000 h. Finite-element analysis was also conducted to assess the damage and remaining life, and the results were compared with the experimental results.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 702-713, October 22–25, 2013,
Abstract
View Paper
PDF
An internal pressure creep test has been carried out on a Gr. 91 steel longitudinal welded pipe at 650°C to examine the type IV failure behavior of actual pipes, using a large-scale experiment facility “BIPress”, which can load internal pressure and bending force on large diameter pipes at high temperatures. The creep test was also interrupted three times to measure hardness and voids density in the HAZ region of the outer surface of the test pipe. Results of the measurement of the hardness and voids density at the interruption did not indicate creep damage accumulation. The welded pipe suddenly ruptured with large deformation, which caused crushing damage to the surrounding facility. Type IV cracking occurred in the longitudinal welded portion of the test pipe, and the length of the crack reached 5000mm. SEM observation was carried out at the cross section of the welded portion of the test pipe and voids density was measured along the thickness direction in the HAZ region. To clarify the stress/strain distribution in the welded portion, creep analysis was conducted on the test pipe, where the materials are assumed to consist of base metal, weld metal and HAZ. After stress redistribution due to creep deformation, stress and strain concentrations were observed inside the HAZ region. Then, the authors' creep life prediction model was applied to the creep test result to examine its validity to actual size pipes. It was demonstrated that the life prediction model can evaluate damage of the Gr. 91 steel longitudinal welded pipe with sound accuracy.