Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Mahyar Boostandoost
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 71-75, November 1–5, 2015,
Abstract
View Paper
PDF
This work is a unique solution for enhancing optical failure analysis and optical signal transmission. Optical failure analysis remains to be a vital part of the analysis process, despite shrinking feature sizes and challenging package technologies. The presented optical signal transmission supports the development of photonic integrated circuits. The key component is a Focused Ion Beam (FIB) process which shapes optical lenses out of the sample material leading to an improvement in lateral resolution and signal transmission. Two cases are shown that demonstrate these improvements. The first case is an optical backside analysis in a spatially confined opening of a package where other Solid Immersion Lens (SIL) systems could not be applied. It offers an improvement in spatial resolution by a factor of 2, down to a FWHM of 387 nm. The second case is a novel application for FIB shaped lenses aiming at photonic integrated circuits. This lens is created out of the isolating frontside and improves the grating coupler efficiency by a factor of 4.1.