Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
M. Shibata
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 465-470, May 15–18, 2006,
Abstract
View Paper
PDF
To protect various gas turbine components against high temperature in the hot sections of power generation plants and aircraft engines, thermal barrier coatings (TBCs) have been developed and widely used. Conventional TBCs consist of a MCrAlY bond coating for oxidation resistance and a ceramic top coating for thermal insulation. High quality coatings of MCrAlYs have been produced mostly by low pressure plasma spraying but other more economical processes are also used depending on the operating conditions of the component to be coated. In this study, CoNiCrAlY powders were deposited on Inconel 718 substrate with 3 types spraying system, i.e., low pressure plasma spraying, high velocity oxy-fuel spraying, and atmosphere plasma spraying. Specimens were isothermally tested for up to 100 h in air at 1373 K. Mass gain of the coatings was measured. Microstructure of the coating cross sections and the surface oxides were observed with SEM. To identify the crystal structure of the formed oxides, the specimens were analyzed by XRD from the surface.