Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
M. Schaefer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 158-162, May 3–5, 2010,
Abstract
View Paper
PDF
Iron based materials are classified as being more health and environmentally friendly as well as cost-effective (material and machining costs) compared to typical materials used for wear protection applications (e.g. cermets). The advantage which is seen in using very fine powders (< 15 μm), is their potential to spray relatively thin, dense near-net-shape coatings with comparable smooth surfaces. This can lead to lower coating as well as machining costs. In this work fine Fe-based powders (-15+5 μm) have been used in order to produce wear resistant coatings for applications in the printing industry by means of air plasma spraying (APS). With regard to oxidation problems of such fine Fe-based materials a shroud for the air plasma spraying system has been developed and deployed. The resulting coatings have been analysed with respect to the microstructure, micro hardness, chemical and phase composition as well as surface roughness (as-sprayed). The economical aspects have also been considered.