Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
M. Pohl
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 259-265, June 7–9, 2017,
Abstract
View Papertitled, Effect of Different Shroud Principles on the Performance of a NiTi Coating Produced by Means of Twin-Wire Arc Spraying (TWAS) Process
View
PDF
for content titled, Effect of Different Shroud Principles on the Performance of a NiTi Coating Produced by Means of Twin-Wire Arc Spraying (TWAS) Process
The super-elasticity behavior of a NiTi-shape memory alloy (SMA) is very promising regarding cavitation resistance. The need of high vacuum conditions by thermal spraying processes, to avoid oxidation, has always been and still is the main obstacle for the widespread of NiTi as a coating material. This work deals with studying the effect of the different shroud concepts on the obtained oxide content and the phases of the obtained twin wire arc sprayed (TWAS) coatings. The concepts include the use of argon as a shield in gas shroud (GS) as well as the use of an extended air cap attachment as a massive shroud (MS). The use of MS-concept led to a significant decrease in oxide content and therefore was selected to spray pre-alloyed NiTi-SMA wires. The standoff distance between the MS-outlet and the substrate surface shows also an effect on the obtained phases and thus on the behavior of the obtained coatings. At lower standoff distance a pseudo-elastic behavior was obtained and therefore a higher cavitation and wear resistance. The use of argon as atomization and shield gas with a massive shroud could be a cost-effective alternative for vacuum process in case of spraying NiTi-SMA pre-alloyed feedstock materials.
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 163-168, March 17–19, 1999,
Abstract
View Papertitled, Auswirkungen der Abscheidebedingungen auf das Kavitationsverhalten von Plasmajet-CVD-Diamantschichten (Effects of the Conditions of Diamond Synthesis on the Cavitation Behaviour of Plasma Jet CVD Diamond Coatings)
View
PDF
for content titled, Auswirkungen der Abscheidebedingungen auf das Kavitationsverhalten von Plasmajet-CVD-Diamantschichten (Effects of the Conditions of Diamond Synthesis on the Cavitation Behaviour of Plasma Jet CVD Diamond Coatings)
Diamond films have been deposited on WC - 6% Co hard metal tools by the DC plasma jet CVD synthesis. The parameters of the process (gas composition, temperature of the gas phase and the substrate, process pressure) as well as of the substrate surface (material, pretreatment) are related to the diamond film growth. For machining abrasive materials the hard and wear resistant diamond coatings must adhere good to the substrate. The wear behaviour of thin diamond films on hard metals under cavitation treatment has been examined. Thus the conditions of diamond synthesis have been varied especially concerning the coating duration and the process pressure and engineering. The cavitation test reacts more sensitive to coating defects of pm size than the conventional testing methods (scratch test, indenter method) and considers the microstructure of the material. Paper text in German.