Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
M. Mueller
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2024) 182 (1): 28–33.
Published: 01 January 2024
Abstract
View article
PDF
The hands-on experience provided during an Eisenman Materials Camp for students is a compelling way to excite young people to consider a STEM career. The volunteer-lead curriculum pairs a weeklong failure analysis project with many hands-on heat treating, metal casting, and materials characterization experiments. This article provides background about the Eisenman camp as well as the other student camps organized by the ASM Materials Education Foundation and discusses their benefits and long-term impact.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 933-938, May 25–29, 1998,
Abstract
View Paper
PDF
Solid oxide fuel cells (SOFC) are expected to gain a high importance as direct converters for transforming chemical into electrical energy. They have the potential of working with considerably higher efficiency and much less environmental problems compared to systems used so far. SOFCs of present technology operate at temperatures in the range of 950 °C. Besides an increase in performance and stability, a main precondition for a technical breakthrough of SOFCs is a drastic reduction of their production costs. Approaches are the use of less-expensive materials, new SOFC designs with thinner components and the improvement of presently applied production routes, or their replacement by other techniques such as thermal spray methods. DC- and RF-VPS show very attractive properties particularly if the cell will be manufactured in one consecutive combined process. The state of SOFC spray design will be described together with results of the process adaptation and the SOFC components development.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1523-1527, May 25–29, 1998,
Abstract
View Paper
PDF
Suspensions of cobalt spinel (Co3O4) powders were rf plasma sprayed to form electrocatalytically active anode layers. Stable cobalt oxide suspensions of low viscosity exceeding 50 wt% solid phase have been processed. A spheroidization study revealed the formation of large spherical powder particles (- 30 + 80 µm). Cobalt oxide coatings were produced by rf suspension plasma spraying. The porosity was controlled by optimizing spray distance and reactor pressure. The main disadvantage of the thermal plasma processing of cobalt spinel is that the decomposition of the spinel phase into CoO could not be prevented, not even with the application of an 80% oxygen plasma. However, with a relatively low power oxygen plasma post-treatment, the deposited CoO layers can be oxidized to Co3O4, greatly improving the electrochemical performance of the anode layers.