Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
M. Moshref Javadi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 79-82, June 2–4, 2008,
Abstract
View Paper
PDF
In this research mechanically alloyed Ni-Al powders were used for production of plasma sprayed coatings and effect of spray distance on the phases, microstructure and hardness of the coatings are examined. Three types of Ni-Al powder were made by METCO, LobaChemi and mechanical alloying, were used for comparing coating properties. Coatings are examined by XRD, SEM, EDAX and microhardness measurements. However intermetallic phases were not found in mechanically alloyed powder, but coatings contained these phases. This shows that heat energy of plasma spray caused formation of NiAl phases during flying of particles to substrate or after reaching to substrate. Comparison of coatings properties indicated that mechanical alloying of powders caused improving mechanical properties and decreasing porosity percentage of coatings. Change of spray distance caused changing in phases, porosity percentage and microhardness of coatings. Best spray distance for spraying of the made powder determined as 11cm.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1453-1456, June 2–4, 2008,
Abstract
View Paper
PDF
For production of intermetallic coatings, various types of Ni-Al powders were plasma sprayed at different spray distance and the effect of heat treatment on phases, microstructures and microhardness of coatings was examined. XRD, SEM, EDAX and microhardness were used for characterization of the coatings. Heat treatment of the coatings in various temperatures caused changes in hardness of the coating, increased percentage of intermetallic compounds, completed intermetallic production reactions, but did not change porosity percent. Increasing heat treatment temperature caused oxidation and decreased improvement of coating properties.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1471-1475, June 2–4, 2008,
Abstract
View Paper
PDF
Hydrogen embrittlement in high strength marine structural steels can occur by improper cathodic protection. In this article the possibility of Hydrogen embrittlement (HE) in high strength steels caused by zinc and aluminium thermal sprayed (TS) coatings has been considered. Provided potential from the TS coatings in marine environments and permissible potential for performing cathodic protection and inhibiting HE has been described. Also effective parameters on HE and prevention methods for HE by thermal sprayed coatings has been reviewed. An effective method for quality stabilizing and potential regulating in anticorrosion TS coatings is utilization of the alloyed materials. Most used material for anticorrosion TS coatings is aluminium that provides relatively moderate potential and low current density and in particular situation can cause HE.