Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
M. Honkanen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Microstructure and Wetting Performance of High-Pressure Cold Sprayed Quasi-Crystalline Composite Coatings
Available to Purchase
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 63-71, May 4–6, 2022,
Abstract
View Papertitled, Microstructure and Wetting Performance of High-Pressure Cold Sprayed Quasi-Crystalline Composite Coatings
View
PDF
for content titled, Microstructure and Wetting Performance of High-Pressure Cold Sprayed Quasi-Crystalline Composite Coatings
High-pressure cold spraying has shown significant potential in manufacturing metallic composite coatings for a wide range of industrial applications, including wear and corrosion protection. Quasi-crystalline materials, in turn, are promising candidates due to their unique microstructural features. Combining these concepts, metallic composite coatings were generated using high-pressure cold spraying to produce functional and protective coatings. Several spray trials were done to detect the effect of compositions and size of quasi-crystalline feedstock materials mixed with metal powders, Al6061, and stainless steel 316L, on coating microstructure, integrity, and surface properties. A scanning electron microscope was used to examine the microstructure of the feedstock materials and composite coatings. A 3D surface optical profilometer was also used to investigate surface texture. The wettability of the coating surfaces was measured by static water contact angles using a droplet shape analyzer. Cold-sprayed quasi-crystalline composite coatings showed denser and well-integrated deposits with a random distribution of phases across the composite surface, indicating promising structural reliability and hydrophobic behavior.
Proceedings Papers
Hot Corrosion Resistant Laser Coatings in Diesel Engine
Available to Purchase
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1099-1104, May 14–16, 2007,
Abstract
View Papertitled, Hot Corrosion Resistant Laser Coatings in Diesel Engine
View
PDF
for content titled, Hot Corrosion Resistant Laser Coatings in Diesel Engine
Hot corrosion tests have been conducted on Ni- and Cr-based laser coatings, a high-velocity oxy-fuel (HVOF) sprayed coating and various wrought alloys covered with a synthetic salt of Na 2 SO 4 -V 2 O 5 and exposed at 650°C for 1000 h in air. Coating microstructures and reaction product layers were analyzed with scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The hot corrosion resistance of tested specimen was evaluated by measuring its mean thickness loss. Generally, wrought alloys, HVOF coating and Cr-based laser coatings suffered from selective corrosion beneath salt film, that is, distinct Cr-depleted layer was formed at alloy/salt interface. Cr-based laser coatings exhibited extended solid solubility and they transformed towards equilibrium condition. Cr-rich phases enriched further with Cr and they were prone to corrosion. Low diluted laser coatings and HVOF coating were more resistant to hot corrosion than commonly used industrial standard alloy, Nimonic 80A. Ni-based laser coating exhibited resistance equivalent to Cr-based coatings and superior to corresponding wrought alloy.