Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
M. Gunawardana
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 1-4, November 9–13, 2014,
Abstract
View Papertitled, Defect Localization Enhancement Using Light Induced CI-AFP
View
PDF
for content titled, Defect Localization Enhancement Using Light Induced CI-AFP
This paper describes the effectiveness of using light induced Current Imaging – Atomic Force Microscopy (CIAFP) to localize defects that are not easily detected through conventional CI-AFP. Defect localization enhancement for both memory and logic failures has been demonstrated. For advanced technology nodes memory failures, current imaging from photovoltaic effects enhanced the detection of bridging between similar types of junctions. Light induced effects also helped to improve the distinction between gated and nongated diode, as a result enhanced localization of gate to source/drain short.
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 349-353, November 13–17, 2011,
Abstract
View Papertitled, Failure Analysis Methodology on Unique 68mm Single Ring Pattern Due to Load Lock Burr
View
PDF
for content titled, Failure Analysis Methodology on Unique 68mm Single Ring Pattern Due to Load Lock Burr
This paper describes a low yield case which results in a unique 68 mm single ring wafer sort failure pattern. A systematic problem solving approach with the application various FA techniques and detailed Fab investigation resolved the issue. The root cause for the unique ring failure pattern was due to a burr at the implanter load lock. The burr scratched and toppled the photoresist resulting in subsequent blocked well implantation and memory failure.