Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
M. Calderini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 304-320, October 22–25, 2013,
Abstract
View Paper
PDF
Driven by the need to reduce CO 2 emissions through increased steam temperature and pressure in new power plants, research in Europe led to the development of enhanced high-chromium steels with improved creep resistance and service temperature stability. After years of development, Rotor E, a steel composition created during the COST programs (501, 522, and 536), has become a commercially available product. While traditionally forged and remelted using electroslag remelting (ESR), this paper demonstrates the successful production of large rotor components using a conventional process without ESR, achieved through tailored process control. This paper details Società delle Fucine's (SdF) current production of Rotor E using a conventional route based on ladle furnace and vacuum degassing, as well as the mechanical and creep behaviors of the resulting forged products. Additionally, SdF produced a prototype FB2 rotor using a conventional process. FB2, a 10% Cr steel containing cobalt and boron but lacking tungsten, emerged from the COST 522 program as the best candidate for scaling up from a laboratory experiment to a full-sized industrial component. Notably, the addition of boron effectively improved the microstructure's stability and consequently enhanced the creep resistance of these new, advanced martensitic steels. Finally, the paper will present updates on the long-term characterization program for the FB2 steel trial rotor.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 342-360, August 31–September 3, 2010,
Abstract
View Paper
PDF
Research conducted under European COST programs has demonstrated the beneficial role of boron in enhancing the microstructural stability and creep performance of new martensitic steels. The FB2 steel (a 10%Cr steel containing Co and B, without W) emerged as the most promising candidate and was successfully scaled up to a full industrial rotor component by Società delle Fucine. Extensive creep testing, now reaching 50,000 hours, indicates an improvement of 15-20 MPa over Grade 92 at 600°C for 100,000 hours. STEM and X-ray analysis of long-term aged specimens confirmed that boron significantly enhances precipitate stability compared to Grade 91 and 92 steels, validating its role as a creep-strengthening element and stabilizer of carbides and martensitic structure.