Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Date
Availability
1-1 of 1
Lucas Maciel de Andrade Lima
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 600-611, October 15–18, 2024,
Abstract
View Paper
PDF
Miniature specimen tests are necessary to assess the mechanical properties of new fuel cladding alloys for next-generation nuclear reactors. The small specimen allows for extensive testing programs from limited volumes of material. However, there is a lack of testing equipment to perform high-temperature mechanical tests on the miniature specimen. This work presents the development of a high-temperature creep test system for miniature specimens with in situ scanning electron microscope (SEM) testing capability for real-time characterization. Here, we discuss the challenges of the development of the system, such as gripping the samples, loading, heating, cooling mechanisms, and strain measurement. The equipment is used to investigate the creep behavior of FeCrAl alloy Kanthal APMT, and the results are compared with conventional creep test data from the same batch of this material.