Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Lloyd A. Allen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 57-63, September 14–16, 2021,
Abstract
View Paper
PDF
Carburization is a common method of hardening steel surfaces to be wear-resistant for a wide range of mechanical processes. One critical characteristic of the carburization process is the increase in carbon content that leads to the formation of martensite in the surface layer. Combustion and spark-OES are two common methods for determination of carbon in steels. However, these techniques do not effectively separate carbon from near surface contaminants, carburized layers, and base material composition. Careful consideration of glow discharge spectroscopy as a method of precisely characterizing carbon concentration in surface layers as part of a production process should be evaluated in terms of how the resulting data align with other common analytical and metallurgical measurements. When used together, glow discharge spectroscopy, optical microscopy, and microhardness testing are all useful, complementary techniques for characterizing the elemental composition, visually observable changes in material composition, and changes in surface hardness throughout the hardened case, respectively. Close agreement between related measurements can be used to support the use of each of these techniques as part of a strong quality program for heat treatment facilities.