Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Liew Chiun Ning
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 190-193, November 12–16, 2023,
Abstract
View Papertitled, Effective Fault Localization Approach for High Speed Transceiver Failure: From Non-destructive to Destructive
View
PDF
for content titled, Effective Fault Localization Approach for High Speed Transceiver Failure: From Non-destructive to Destructive
It has been a challenge to perform failure analysis for miniaturization of process node technology in high-speed transceiver. Failure analysis plays an important role in root cause analysis to enable R&D, product quality & reliabily improvement. This paper demonstrated an effective FA approach on a real case with ADPLL functional failure within a high-Speed transceiver in complex sub-nano FPGA. This successful case is achieved by incorporating Analog Probe (APROBE), Infrared Emission Microscopy (IREM), extensive layout study, delayering, Nanoprobing and Scanning Electron Microscopy (SEM) for defect localization.