Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
Liangshan Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 92-96, October 30–November 3, 2022,
Abstract
View Paper
PDF
This paper reports the novel application of Plasma Focused Ion Beam (pFIB) to reveal subtle defects in advanced technology nodes. Two case studies presented, both of which alter the standard work procedure in order to find the defects. The first case highlights the precise milling capability of pFIB in discovering the metal buried via void that is easy-to-miss by standard failure analysis (FA) practice. The second utilizes pFIB circuit edit process to facilitate electrical isolation in pinpointing the exact failure location and thus enables identifying the defect more efficiently.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 372-376, November 10–14, 2019,
Abstract
View Paper
PDF
This paper demonstrates a two-pin Electron Beam Induced Current (EBIC) isolation technique to isolate the defective Fin with gate oxide damage in advanced Fin Field Effect Transistor (FinFET) devices. The basic principle of this twopin configuration is similar to two-point Electron Beam Absorption Current (EBAC) technique: a second pin as ground on the gate is added to partially shunt the EBIC current and thus creates EBIC contrast from the defective Fin. In this way, the challenge of highly resistive short path inside the Fin in a narrow gate can be overcome. The paper will provide failure analysis details using this technique for defective Fin isolation.
Proceedings Papers
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 303-308, October 28–November 1, 2018,
Abstract
View Paper
PDF
Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.
Proceedings Papers
Identification of Defective Fin by E-beam Induced Current in Advanced FinFET Device Failure Analysis
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 349-352, October 28–November 1, 2018,
Abstract
View Paper
PDF
E-beam induced current technique is a fault isolation technique based on SEM-based nanoprobers. Electron beam induced current (EBIC) can help failure analysts quickly identify the defective device with abnormal junction behavior from a relatively large area of interest. Using EBIC, defects can be pin-pointed down to individual Fin, which significantly enhanced the success rate. In this paper, two cases are used as examples to illustrate how this failure analysis (FA) methodology provides a powerful and efficient solution in localizing defective fins. In the first case, a local full bit-line fail was submitted for failure analysis. In the second case, a MOS capacitor parametric test structure designed to monitor gate oxide break down voltage that showed early break down behavior during in-line test. Failure analysis was requested to investigate the root-cause.
Proceedings Papers
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 383-386, October 28–November 1, 2018,
Abstract
View Paper
PDF
The paper reports the investigation on the root cause of source-drain leakage in bulk FinFET devices. While the failing device was readily isolated by nanoprobing technique and the electrical analysis pinpointed the potential defect location inside the Fin channel, the identification of physical root cause went through extreme challenges imposed by the tiny-sized device and the unique FinFET 3D architecture. The initial TEM analysis was misled by the projection of a species in the lamella surface and thus could not explain the electrical data. Careful analysis on the device structure was able to identify the origin of the species and led to the discovery of the actual root cause. This paper will provide the analysis details leading to the findings, and highlight the role of electrical understanding in not only providing guidance for physical analysis but also revealing the true root cause of failure in FinFET devices.
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 451-455, November 5–9, 2017,
Abstract
View Paper
PDF
This paper highlights the application of nanoprobing technique and electron tomography analysis to characterize the tiny gate oxide pinhole defect in NMOS FinFET devices. Nanoprobing technique was utilized to achieve a better understanding on the failure mechanism by characterizing the device electrical behaviors, and electron tomography, capable of mitigating the common projection issue encountered by general TEM analysis, was applied for physical analysis. It has been demonstrated through two cases, one logic fail and the other memory fail, that these two techniques together can effectively identify the root cause of pinhole defect. This type of pinhole defect, characterized by a tiny spot of oxide discontinuity and without excessive materials inter-diffusion, has been extremely challenging in FA analysis. This paper will provide the analysis details leading to the successful characterization of such type of oxide pinhole defect.