Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Li Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 192-197, May 11–14, 2015,
Abstract
View Paper
PDF
The thermal phase stability of plasma sprayed TBC is presented and discussed. TBC phase transformation after various isothermal heat treatment processes was studied via Xray diffraction (XRD) and Raman Spectroscopy methods. The YSZ-Gd-Yb and 20YSZ TBCs demonstrated superior thermal phase stability as compared with the high and standard purity 8YSZ TBCs, although higher purity also helps delay the tetragonal to monoclinic phase transformation. The phase transformation appears to be suppressed by cooling at higher rates. This data presents a qualitative phase stability comparison between the various coatings. However, cooling rate has to be taken into consideration in determining the extent of phase instability during the coating design of aero turbine applications.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005733
EISBN: 978-1-62708-171-9
Abstract
This article presents a summary of the current and new materials and processing techniques for thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). Different thermal spraying and postspraying processing techniques are required to produce coatings with optimal performance. For TBCs and EBCs, the elastic modulus, mechanical strength, and toughness values are extremely important in predicting failure behavior under stress and strain conditions, mainly for modeling purposes. Sand and/or volcanic ash particles are molten in the hot zones of turbines and deposited over TBCs and EBCs. They form calcium-magnesium-aluminosilicate (CMAS) glassy deposits.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 1098-1102, May 10–12, 2004,
Abstract
View Paper
PDF
Splats are the building blocks of thermal sprayed coatings, and thus the mechanical properties of such coatings are directly related to splat behavior. Elastic and elastoplastic properties of coatings have been measured on the macro-scale, but are not yet quantitatively predictable using process parameters as inputs. Coating mechanical properties represent contributions from intrinsic splat properties, splat-splat interfaces, and other microscopic defects. In this study, we investigated the intrinsic properties of Ni and Ni based alloy splats on substrates, for a variety of process methods and input parameters. Residual stresses were measured via X-ray microdiffraction and elastic and elastoplastic properties were studied via nano-indentation. From a purely scientific standpoint, splat studies provide insight into rapidly cooled small-volume structures that often exhibit extra ultrafine- or nano-crystalline structure. Thus, accordingly, nano-indentation response was also compared to the prediction for bulk counterparts of the splat materials.