Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
L.J. Ritchie
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 501-506, May 14–16, 2007,
Abstract
View Paper
PDF
The monoclinic and tetragonal phase compositions and distribution in air plasma sprayed (APS) yttria-partially stabilized zirconia (YPSZ) thermal barrier coatings were studied. The coatings were produced from powders with varying phase concentrations, chemical purity and powder production processes. Both the powder and coatings were characterized using X-ray diffraction (XRD) and Raman spectroscopy. The use of environmental scanning electron microscopy (ESEM) and X-ray energy dispersive analysis (EDS) added morphological and elemental information to the study. XRD and Raman spectroscopy were shown to be powerful combined tools and shows an overall decrease in the monoclinic phase within the coatings produced from the different powders. The distribution of both the monoclinic and the tetragonal phases could be highlighted both in the coatings and the individual powder particles. This indicated changes in monoclinic concentration in the less dense areas of some of the coatings and a varying distribution across particles in some of the powders. Raman mapping over small areas also showed how phase surface distribution, on the coatings surfaces, could be assessed.