Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
L.C. Hsia
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Tester-Driven Dynamic Laser Stimulation for Hard Functional Failure
Available to Purchase
ISTFA2010, ISTFA 2010: Conference Proceedings from the 36th International Symposium for Testing and Failure Analysis, 332-337, November 14–18, 2010,
Abstract
View Papertitled, Tester-Driven Dynamic Laser Stimulation for Hard Functional Failure
View
PDF
for content titled, Tester-Driven Dynamic Laser Stimulation for Hard Functional Failure
Dynamic Laser Stimulation (DLS) fault isolation techniques involve using an Automated Test Equipment (ATE) to run the device under certain test patterns together and a scanning laser beam to localize sites sensitive to laser stimulation. Such techniques are proven effective for localizing soft failures. In this paper, we demonstrate the feasibility of using such dynamic techniques for functional hard failures and design debug applications. We illustrate experimentally the significance of achieving sufficient signal to noise ratio (SNR) before such applications can be realized effectively, due to the large irregular noise that couples through as the functional pattern is run. We adopted a combination of hardware noise reduction and test program modification to overcome this challenge.