Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-13 of 13
L. Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1025-1028, May 10–12, 2016,
Abstract
View Paper
PDF
In this study, cold sprayed Cu approximately 40 to 60 μm in thickness is deposited on 6063 and LD10 aluminum plate to improve wettability for low temperature soldering and to serve as a barrier layer to protect the substrate from gallium diffusion originating in the solder paste. The effect of the coating on wettability, diffusion, solder joint interface microstructure, and shear strength is investigated in detail.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 293-298, May 10–12, 2016,
Abstract
View Paper
PDF
This study evaluates the thermal and mechanical properties of plasma-sprayed lanthanum zirconate thermal barrier coatings and compares them with conventional 8YSZ TBCs. The La 2 Zr 2 O 7 coatings were found to have a lower thermal conductivity than 8YSZ, although this is offset by lower bond cap tensile strength and poor erosion resistance. A double-layered structure with a La 2 Zr 2 O 7 coating on porous YSZ was also tested and is shown to have better thermal shock performance than single-layer La 2 Zr 2 O 7 and double-layer structures formed on dense 8YSZ sublayers.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 576-579, September 27–29, 2011,
Abstract
View Paper
PDF
Thermal barrier coatings (TBCs) functioning in the aviation and power generation industries have heavily relied on plasma sprayed yttria stabilized zirconia (YSZ) on MCrAlY bond coated engine components. Among those factors which may impact the repeatability and reliability of a TBC coating, powder feedstock is one of the most important while being the challenging to control constituents as it is difficult to keep the powder chemistry, morphology and size distribution exact the same from lot to lot, year after year. In this study the authors systematically vary the size distribution of one type of commercial YSZ powder to explore the effect of the size distribution on the TBC deposition and the coating performance. Deposition rate and efficiency are quantitatively compared for those experimental powders. The coating microstructures and performances for different sizing are also evaluated analytically. Understanding the impact of the powder variation on the coating deposition and performance is essential to determine the quality control standards.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 679-692, August 31–September 3, 2010,
Abstract
View Paper
PDF
A detailed examination has been carried out of the microstructural evolution and mechanical properties of samples of T91 and T92 steels which have been subjected to both a ‘normal’ preservice heat treatment and an extended stress relief heat treatment at 765°C for up to 16 hours. The samples have subsequently been creep tested to failure at different stresses ranging from 66 to 112 MPa. In each case, a reduction in rupture time was observed of 20-30% in the samples which had experienced the additional stress relief heat treatment compared to those which had not. It is shown that these data, when compared with the mean values expected from European Creep Collaborative Committee (ECCC) Datasheets, result in a reduction in stress of approximately 10% of the mean value predicted from the ECCC data, which is within the allowable scatter band.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 77-82, May 4–7, 2009,
Abstract
View Paper
PDF
This work investigates the effect of calcium-magnesium aluminosilicate (CMAS) deposits on thermal barrier coatings. CMAS infiltration was achieved by means of a cement tape containing synthetic glass powder. The tape was placed on coating surfaces and melted in a tube furnace or with a flame burner. The resulting coating failures were investigated by examining thermomechanical and thermochemical interactions between the coatings and aluminosilicate deposits. It was found that the porous nature of thermal spray TBCs makes them vulnerable to CMAS attack even before discernible chemical reactions start. Possible mitigation approaches are proposed for improving coating life under such conditions.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 579, May 2–4, 2005,
Abstract
View Paper
PDF
It is known that particles injected in a plasma stream follow differing trajectories which in turn leads to different thermal and kinetic history dependent on the location of particle in the plume. The variation in particle characteristics (temperature and velocity) across the plume has been the focus of research over the years. The corresponding variation in impacting particles, particularly in terms of their splat characteristics have not been explored as systematically. This is important for a complete understanding of the coating build-up phenomena and the variations in coating properties. This paper presents the results of a study in which the spatial variation in particle properties is mapped to the spatial variation in splat properties. This has been accomplished using a procedure to collect splats using a shutter mechanism that allows us to expose the substrate for approximately 50 milliseconds. Splats of Alumina and a Ni- Cr-B-Si-Mo have been collected on polished substrates maintained at 250ºC and studied. Micrographs reveal differing splat morphologies across the spray plume – from missing-cores in one part to complete disc-shaped splats in the other. Extent of flattening and fragmentation have been quantified and found to vary within the ‘splat map’. Correlation between the location of particle in the plume and the resulting splat has been constructed using this data. Abstract only; no full-text paper available.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 143-147, May 10–12, 2004,
Abstract
View Paper
PDF
Thermal spray coatings exhibit a wide variety of microstructural characteristics that lead to variation in their functional properties. A complete understanding of the plasma spray process includes examination of the particle-flame interaction, particle impact (to form the splats), and the particle-substrate interaction during coating deposition. The links between these process parameters and coating properties has been established by using diagnostic tools in conjunction with a splat collection shutter and an in-situ curvature measurement instrument. In this study, a commercial grade molybdenum (Mo) powder was plasma sprayed; the spray stream was characterized in relation to the resulting particle state. A "splat map" was deposited through a "spray stream guillotine" to capture the fingerprint of the plume cross section. Subsequently, coatings were deposited at these spray conditions on a newly developed in-situ curvature measurement instrument to measure coating stresses and to estimate the coating modulus. Splats and coatings were subsequently characterized by micro-diffraction (for splat residual stresses), by nano and micro-indentation for elastic and elastic-plastic properties, and by electron microscopy. This complete history of the process followed by splat and coating characterization provides insight into the correlation between processing parameters, resultant particle states, and final coating properties. The role of particle temperature and velocity on the splat (and coating) morphology and residual stress is explained in the results.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 905-911, May 5–8, 2003,
Abstract
View Paper
PDF
The melting behavior of in-flight particle and its impact on splat morphology are studied. A group parameter, “melting index”, has been derived to correlate the melting status of inflight particles with particle size, velocity, and temperature which can be measured experimentally. Numerical simulations have been used to determine the unknown parameters in the melting index. The effect of particle size on its melting behavior has been investigated.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1041-1046, May 5–8, 2003,
Abstract
View Paper
PDF
Molybdenum powder has been plasma sprayed on stainless steel, brass and aluminum substrates. The substrate melting phenomenon is observed and investigated by means of scanning electron microscopy (SEM) and scanning white light interferometery (SWLI). It is found that the flower-shape splat morphology is typical for molybdenum on all three substrate materials when the substrate is at room temperature. Notable substrate melting is manifested through the energy dispersion analysis of X-ray (EDAX) map and Robinson back-scattered image of cross-sections of splats. It has been shown that the substrate material plays an important role in substrate melting phenomenon. The lift angle of the petals of splats and the maximum crater depth have been characterized and compared. Both of these increase in the sequence, from stainless steel, brass to aluminum. A ‘volume of fluid’ (VOF) based model coupled with rapid solidification has been used to simulate splat deformation, solidification, substrate melting and resolidification. The numerical & analytical results agree quite well with the experimental data. A substrate melting mechanism is proposed based on the time scales of the droplet solidification and substrate melting to explain the formation of flower like splat morphologies.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 777-782, May 8–11, 2000,
Abstract
View Paper
PDF
The spreading process of an isothermal droplet impinging on flat substrate surface in plasma spraying is studied numerically in 2D cylindrical coordinate systems by using 'Marker-And-cell (MAC) Technique. The changes and distributions of the transient contact pressures upon substrate surface at flattening are calculated under different droplet conditions with different impacting velocities and densities. The simulated results show that the transient contact pressure is initially high and concentrates at a small contacting area, it then spreads and drops quickly while droplet flattens. The maximum pressure is located at the front of the droplet at early stage of deformation, which pushes the fluid moving quickly along substrate surface and results in lateral flow. The contact pressure is mainly related to the droplet density and impact velocity. The peak pressure reduces consistently along the substrate surface so that the splashing at the periphery of flattening droplet may occur to form a reduced disk like splat because of the falling of contact pressure in this region and the escaping of the evaporated gas from the droplet / substrate interface.
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 530-535, March 17–19, 1999,
Abstract
View Paper
PDF
The flattening of droplet impacting on a substrate is one of the most important basic processes during the formation of a thermal spray coating. The structure of splat will determine the structure of coating, and consequently the adhesion and properties of coating. This paper investigates the dependency of the change of the morphologies of splats from irregularly complicated form to regular disk form by the preheating of substrate on the types of evaporable substances adsorbed on substrate surface in order to provide farther evidence for the evaporated gas induced splashing mechanism. Paper includes a German-language abstract.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 473-480, May 25–29, 1998,
Abstract
View Paper
PDF
The splashing usually occurs when a droplet impact on a substrate surface during thermal spraying, which results in the formation of splat with irregularly complicated morphology. In present study splats are formed on polished stainless steel substrate surface covered with different organic substances with different boiling points by plasma spraying under different preheating temperature of substrate in order to clarify the factors which control the splashing during droplet flattening in thermal spray process. The droplet materials used are aluminum, nickel, copper, Al2O3 and molybdenum. Three kinds of organic substances used are xylene, glycol and glycerol which are brushed on the surface of substrate before spraying. It is found that when the preheating temperature exceeds 50°C over the boiling point of organic substance brushed on substrate surface the regular disk type splats are formed in the case that no substrate melting occurs by molten droplet. When the flattening of droplet causes the melting of substrate such as the combination of Mo droplet with stainless steel substrate, the preheating of substrate has no influence on splat morphology. The evaporated gas induced splashing and substrate surface melting induced splashing models are proposed to interpret the formation of the annulus-ringed splat.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 481-487, May 25–29, 1998,
Abstract
View Paper
PDF
The structure and morphology of plasma sprayed splats are experimentally investigated using different droplet materials and substrate materials. Droplet materials include aluminum, copper, nickel and refractory metals such as molybdenum and tungsten, and substrate materials include aluminum, stainless steel, and molybdenum plates. The results show that the splashing occurs during the splatting of a completely molten droplet. Most splats formed by droplets molten completely are only central part of the ideal disk type ones, which are defined as the annulus-ringed disk-like splat. It is found that the morphology of such annulus-ringed disk-like splat is greatly influenced by the combination of droplet and substrate materials depending on whether substrate melting occurs. With the combinations of droplet and substrate materials which are of similar thermal properties the splashing of central area of splat tends to occur to present a honeycomb structure at the center of splat. When droplet impacting can cause melting of substrate annulus-ringed splat prefers to present a split type. The flattening ratio of an annulus-ringed disk splat is typically less than 2.