Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
L. Jiang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 237-243, May 10–12, 2016,
Abstract
View Paper
PDF
This study assesses the effect of yttrium additions on plasma sprayed MoS 2 /Ni-SiC-Y coatings produced from particle-reinforced composite powders. It is shown that the microstructure of the self-lubricating coatings improves with the addition of yttrium, resulting in increased hardness and cohesive strength. The tribological properties of the coatings were also studied, showing that the ideal amount of yttrium is 12 wt% based on wear loss measurements and that the fractal dimension of sliding wear debris depends on the friction load as well as the mass fraction of yttrium.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 809-813, May 14–16, 2007,
Abstract
View Paper
PDF
In this paper, submicron α-Fe/nylon-12 microwave absorbing composite coatings were deposited by a Low Temperature High Velocity Air Fuel (LTHVAF) spraying technique. The microstructure and the electromagnetic parameters of coatings and powders were tested. The coatings are dense and have low porosity. The microwave reflectivity coefficient of the coatings was calculated with permeability and permittivity of the powders. It shows that there is a relationship between the mass fraction of composite powders and microwave absorption ability of coatings. At the threshold value, the composite coatings can absorb microwave strongly. When the coatings thickness increases, the minimal reflectivity coefficient moves to the low microwave frequency. There exists an appropriate coatings thickness in order to optimize the absorption of the microwave energy. The mass fraction and the thickness can affect the performance of composite absorber coatings.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1001-1006, May 14–16, 2007,
Abstract
View Paper
PDF
The concept, development background and the present applications of functionally gradient materials (FGMs) are introduced. Some spraying methods to fabricate FGM coatings, such as plasma spraying, flame spraying, high velocity oxy-fuel (HVOF) spraying and detonation flame spraying are reviewed. The research emphases and prospects of the technologies are put forward.