Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 63
L-M. Berger
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 580-593, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thermally sprayed wear resistant coatings have proven their effectiveness in many applications. Their benefit is unquestionable in the case of mutual sliding contact or abrasive stress caused by hard particles. However, for the case of dynamic impact loading, either single or cyclic, the lifetime of different types of coatings is rarely described, probably due to the complex influence of many parameters. The paper deals with the evaluation of resistance to dynamic impact loading of two types of HVOF-sprayed Cr3C2-rich binary hardmetal coatings (Cr3C2-42%WC-16%Ni and Cr3C2-37%WC-18%NiCoCr) with respect to the variation of their deposition parameters and compares them to a well established Cr3C2-25%NiCr coating. For each coating, a Wohler-like curve was constructed based on a failure criterion of sudden increase in impact crater volume. Besides, coatings deposition rate, residual stress, microstructure and hardness were evaluated. Differences in the coatings dynamic impact wear resistance was found, related to their residual stress. The failure mechanism and crack propagation mode are analyzed using SEM of impact surface and cross-sections. Deformation and related stress changes in coated systems during dynamic impact loading are described using FEA analyzes.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 278-282, May 24–28, 2021,
Abstract
View Paper
PDF
Manufacturing of steel components is often done at high temperatures (HT) posing a serious challenge to components such as forming tools. Thermal spray coatings provide a cost-effective solution for surface protection under HT, corrosive environments and severe wear conditions. Thermally sprayed coatings based on cubic hard materials such as TiC and TiCN can provide an alternative to widely used Cr3C2-NiCr. While the latter possess a superb oxidation resistance and wear resistance at HT, they are prone to degradation in the presence of Mn, an element commonly alloyed in many modern steel grades such as TWIP (twinning-induced plasticity steel). In this study, a (Ti,Mo)(C,N)-29% Ni hardmetal feedstock powder was prepared by agglomeration and sintering. Coatings were deposited using a high velocity air-fuel (HVAF) spray process. The coating was benchmarked against a standard Cr3C2-NiCr coating obtained with the same spray process. Our work comprises analyses of the feedstock powder along with the resulting coating microstructure after deposition and heat treatment. Further, the HT sliding behavior against TWIP steel using a HT pin-on-disc tribometer at 700°C was investigated. The results showed a clear benefit of the TiCN-based coating, with almost no wear detected, while the Cr3C2-coating showed a significant wear loss. Based on these results, the TiCN-based coating is regarded as potential solution for prospective forming applications of modern high Mn steels, such as TWIP.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 178-183, June 7–9, 2017,
Abstract
View Paper
PDF
Aluminum titanate (Al 2 TiO 5 ) is a congruently melting compound in the binary Al 2 O 3 -TiO 2 system, which decomposes below 1200 °C. Its properties (e.g. thermal conductivity, CTE) differ significantly from those of Al 2 O 3 and TiO 2 . Thus it is of special interest to study the stability of Al 2 TiO 5 in the spray process and its influence on the coating properties. A commercial fused and crushed Al 2 O 3 -40%TiO 2 powder, which was found to be substoichiometric, was selected as the feedstock material for the experimental work, as the composition is close to stoichiometric Al 2 TiO 5 . Part of that powder was heat-treated in air at 1150° and 1500°C in order to vary the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including metallographically prepared cross sections. A powder having Al 2 TiO 5 as the main phase was not possible to be prepared due to inhomogeneous distribution of Al and Ti in the original powder. Plasma spraying was performed with a TriplexPro-210 (Oerlikon Metco) using Ar-H 2 and Ar-He plasma gas mixtures with 41 and 48 kW plasma power. Coatings were studied by XRD, SEM of metallographically prepared cross sections, and microhardness HV1. Moreover, the results show a clear influence of the Al 2 TiO 5 content in the feedstock powder on the phase composition of the coatings.
Proceedings Papers
Effects of Powder Characteristics and High Velocity Flame Spray Processes on Cr 3 C 2 -NiCr-Coatings
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 988-995, May 11–14, 2015,
Abstract
View Paper
PDF
Wear protection is one of the major applications of thermally sprayed hardmetal coatings. This paper presents the latest results of a systematic study on the influence of Cr 3 C 2 -NiCr feedstock powder characteristics on coating microstructures and economic parameters like deposition rate and deposition efficiency. Four commercial Cr 3 C 2 -NiCr powders with spherically shaped particles but different structural features were characterized and deposited by a liquid-fueled and a gas-fueled HVOF and a HVAF process. Deposition rates and efficiencies were determined; all coatings were analyzed in as-sprayed condition and selected samples were heat-treated at 800 °C in argon atmosphere. The effects of the feedstock powders and spray processes on the coating characteristics (microstructure, hardness, Young’s modulus and diffusion processes during heat treatment) were studied.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 239-245, May 21–23, 2014,
Abstract
View Paper
PDF
This paper presents the results of a study on the static friction properties of (Ti,Mo)(C,N)-Ni hardmetal coatings deposited by HVOF spraying. Coating samples were sprayed on quenched and tempered CrMo steel friction rings using an experimental feedstock powder. Friction surfaces were characterized based on the geometry and distribution of prominent peaks and static coefficient of friction was measured. Test results show that the hardmetal coatings have good potential for use in frictionally engaged joints, but more work is needed to establish a correlation between coating properties and friction behavior.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 368-372, May 21–23, 2014,
Abstract
View Paper
PDF
Thermal spray coatings produced from suspensions can be precisely tuned in terms of thickness, surface morphology, microstructure, and properties. This paper discusses the benefits of using suspensions as feedstocks for atmospheric plasma and HVOF spraying, the equipment required, and the technological challenges that remain to be solved.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 485-490, May 21–23, 2014,
Abstract
View Paper
PDF
This study assesses the potential use of thermally sprayed dicalcium diiron pentaoxide (Ca 2 Fe 2 O 5 ) for thermoelectric generators. Ca 2 Fe 2 O 5 coatings up to 2 mm thick were produced by atmospheric plasma spraying and examined. Compared to the bulk material, the coatings exhibit lower thermal and electrical conductivity. The Seebeck coefficient could not be measured, and the thermoelectric performance was inadequate. The limitations derive not only from the thermal spray process, but also the material itself.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 513-519, May 21–23, 2014,
Abstract
View Paper
PDF
The work presented in this paper addresses some of the challenges of manufacturing thermoelectric (TE) generators by thermal spraying. One of the main obstacles is achieving good coat-on-coat bonding between different types of materials. The coatings must also be mechanically stable and optimized for their respective function. At least four types of materials are required, including electrical insulators, conductors, and thermoelectrically active p- and n-type semiconductors. Four ceramic and three metal feedstock powers were deposited by APS, HVOF, and HVAF spraying using special masking systems, substrate pretreatments, and layer thickness monitoring. After process optimization for each material, multilayer TE generator modules were successfully produced.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 806-812, May 21–23, 2014,
Abstract
View Paper
PDF
This work assesses the influence of powder characteristics on the deposition efficiency, microstructure, and tribological properties of Cr 3 C 2 -NiCr coatings. Four commercial powders prepared by different methods were used for the study. All have a spherical morphology but vary in terms of porosity, carbide grain size, and flowability. The feedstocks were deposited on flat low-carbon steel substrates using a liquid-fueled HVOF torch mounted on an industrial robot. Deposition efficiency was measured along with coating hardness, Young’s modulus, and abrasive wear resistance. In addition, some of the coatings were heat treated and changes in microstructure and hardness were recorded.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 824-829, May 21–23, 2014,
Abstract
View Paper
PDF
This work demonstrates a new single-cathode, multi-anode plasma spray process and compares it with conventional APS and HVOF spraying. Alumina feedstock powders mixed with 13, 40, and 44 wt% titania were deposited under a wide range of spraying conditions following a design of experiments approach. Deposition rate and efficiency were measured and coating characteristics, including microstructure, phase composition, hardness, Young’s modulus, electrical resistivity, and cavitation wear, are compared. The results are presented and the advantages of each process are discussed.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 51-56, May 13–15, 2013,
Abstract
View Paper
PDF
This paper presents the results of a study on the tribological properties of TiC-based coatings deposited by HVOF spraying. Four powder feedstocks consisting of (Ti,Mo)(C,N) hardmetal with Ni and Co binders were prepared by agglomeration and sintering. The feedstocks differ in composition and particle size distribution, the latter being optimized for fuel type and equipment requirements. Coating specimens are evaluated based on microstructure, hardness, bonding strength, and friction and wear behavior. The results are presented and correlated with spray parameters, equipment differences, and feedstock characteristics.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 68-73, May 13–15, 2013,
Abstract
View Paper
PDF
This study investigates the static friction properties of HVOF-sprayed Cr 3 C 2 -NiCr coatings. Measurements of the static coefficient of friction (CoF) of as-sprayed coatings show their potential for use in frictionally engaged joints. The form, orientation, and geometric characteristics of Cr 3 C 2 -NiCr friction surfaces are assessed as well and slipping curves are determined. The results show a standard deviation in the static CoF depending on nominal contact pressure, but it is not yet possible to establish a correlation with coating properties such as carbide grain size and geometrical parameters such as coating roughness.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 74-78, May 13–15, 2013,
Abstract
View Paper
PDF
Compounds of the material group known as MAX phases combine metallic and ceramic properties. In this work, MAX-phase coatings are deposited from modified Ti 3 SiC 2 and Ti 2 AlC commercial feedstock powders using HVOF and atmospheric plasma spraying (APS). Feedstock powders and coatings were studied by microscopy and XRD. Despite the use of unoptimized powders, well adhering and relatively dense coatings were produced. HVOF-sprayed layers had denser microstructures with higher amounts of MAX phases. Optimizing the shape and particle-size distribution of feedstock materials is expected to improve coating properties.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 79-84, May 13–15, 2013,
Abstract
View Paper
PDF
This work assesses the challenges of preparing dense technical ceramic substrates for thermal spraying and evaluates the capabilities of laser ablation in comparison with sandblasting. Sintered Si3N4 and AlN substrates were prepared by both methods and surface roughness was measured before and after treatment. Alumina coatings were deposited by suspension-HVOF and atmospheric plasma spraying, and coating cross-sections were analyzed by optical microscopy and SEM. Sandblasting had little or no effect on surface roughness and cracks were observed in coating cross-sections at the near-surface region of the substrate. Laser ablation, on the other hand, significantly increased surface roughness for both ceramics, producing hole patterns that are shown to vary with laser power and pulse timing. In the case of plasma spraying, the best coatings were achieved when the holes in the substrate were less than 100 µm in depth. With suspension sprayed coatings, the best results were obtained on substrates with deeper (> 100 µm) holes.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 465-470, May 13–15, 2013,
Abstract
View Paper
PDF
Different feedstock powder compositions of the alumina-chromia system were deposited on steel substrates by various methods, including conventional plasma spraying, three-anode plasma spraying, and HVOF. The powders used for plasma spraying had particle sizes of -38+10 µm and for HVOF spraying -25+5 µm and -25+10 µm. The coatings were evaluated by their microstructure, phase composition, and corrosion, wear, and electrical properties. The study shows that wear properties depend strongly on the spray process and that coatings obtained by HVOF spraying have dense structures and excellent wear behavior. Coatings produced by the three-anode plasma process, despite their higher porosity, were found to be harder than conventional plasma coatings and can be sprayed with higher feed rates. The coating properties do not appear to have a linear dependence on chromia content.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 109-114, September 27–29, 2011,
Abstract
View Paper
PDF
Considerable effort has been made to translate the beneficial properties of bulk Ti(C,N)-based hardmetals to wear resistant thermal spray coatings. Such efforts have focused primarily on as-sprayed coatings. However, past work has shown that hardmetal coatings can undergo significant changes when operated at elevated temperature for extended periods. This work characterised the microstructural changes in a HVOF sprayed (Ti,Mo)(C,N)-Ni coating treated in air at 700°C for up to 30 days. The microstructural development of the carbonitride phase was very subtle. Image analysis indicated that the Mo-rich rim phase underwent the greatest degree of dissolution during spraying and precipitation with heat treatment. Dissolution of the carbonitride phases during spraying led to significant alloying of the Ni binder. Rapid recovery of the Ni binder composition occurred after one day of treatment, but it retained a higher steady state degree of alloying relative to the starting powder.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 115-120, September 27–29, 2011,
Abstract
View Paper
PDF
Cr 3 C 2 -NiCr coatings are commonly used to provide abrasion and erosion wear resistance on the surface of components, in particular for corrosive and atmospheric high-temperature environments. For these classical and new applications the knowledge of the thermophysical properties is highly important. In the present work the dependence of the heat conductivity on temperature of two HVOF-sprayed Cr 3 C 2 -25NiCr-coatings prepared by a liquid-fuelled HVOF-process from two different feedstock powders from room temperature up to 700 °C was determined. Thermal diffusivities, density functions, specific heat capacities and coefficient of thermal expansion (CTE) were measured in order to compute the heat conductivity for the coatings. All measurements were performed twice (as-sprayed and after a first thermal cycle) in order to take into account the structural and compositional changes. XRD and FESEM studies were performed in order to characterize the phase compositions and microstructures in the as-sprayed and heat-treated states. Heat conductivities (average of the two coatings) ranging from about 11 W/(mK) at 50°C up to about 20 W/(mK) at 700°C were determined. Differences between the two coatings were clearly detectable. The heat conductivity of the Cr 3 C 2 -NiCr coatings is significantly lower than determined previously for a WC-17%Co coating.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 399-404, September 27–29, 2011,
Abstract
View Paper
PDF
In this work suspension-HVOF spraying (S-HVOF) was used to prepare dense and mechanical stable Al 2 O 3 sprayed coatings with high contents of α-Al 2 O 3 phase. Aqueous suspensions with various contents of powder (from 25 wt.% up to 50 wt.%) have been developed starting from two commercial α-Al 2 O 3 powders, characterized by different purity and particle sizes. The suspensions have been internally injected in a modified combustion chamber of a HVOF TopGun-torch. Coating microstructures, phase compositions and mechanical properties resulting from the interaction between suspension characteristics and spray parameters are presented. Use of suspensions with high solid contents allowed the production of thick, dense and mechanically stable coatings. The α-Al 2 O 3 was the main phase in the coatings produced through the injection of suspensions containing powders with very high purity.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 696-702, September 27–29, 2011,
Abstract
View Paper
PDF
Young’s modulus is not only one of the important mechanical properties of thermally sprayed coatings but also a sensitive indicator of the coating’s microstructural defects. The ceramic coatings studied in this work were based on Al 2 O 3 , TiO 2 and Cr 2 O 3 and prepared by APS (Atmospheric Plasma Spraying), HVOF (High Velocity Oxy Fuel spraying) and suspension-HVOF spraying. The Young’s modulus was systematically studied by laser acoustic surface waves, which is a non-destructive, fast and reliable technique, using two different devices: a tabletop tester for samples and small components (LAwave) and a hand-held portable device. For oxide coatings, it was observed that the results distinctly vary depending on the spray technology. A comparison with the values derived from the instrumented indentation test shows that for most investigated ceramic coatings lower values were measured by laser acoustics. This is due to the influence of the pores and defects in the coatings. The LAwave results are expected to be close to the effective modulus of the material, due to the larger material volume evaluated during the test, which takes the coating defects into consideration.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 890-895, September 27–29, 2011,
Abstract
View Paper
PDF
In this work, completely ceramic heating elements have been developed by the combination of conductive and insulating thermally sprayed oxide coatings. These heating elements with a total thickness of less than 1 mm have been directly applied on metallic substrates. APS- and HVOF-sprayed Al 2 O 3 and spinel (MgAl 2 O 4 ) coatings were employed for insulation. A comparative analysis of the insulating properties (dielectric strength, electrical resistivity) of these coatings is presented. The HVOF-sprayed spinel coatings show better dielectric breakdown strength and higher electrical resistance stability. TiO x , TiO 2 -10%Cr 2 O 3 and TiO 2 -20%Cr 2 O 3 powders have been used to prepare the electrical conductive coatings. The thermal and oxidation stabilities at high temperature, as well the electrical properties have been investigated. Addition of Cr 2 O 3 reduced the oxidation rate of titanium oxide and increased the operational temperature of the heating coating. A ceramic heater consisting of spinel coating as insulator and TiO 2 - 20Cr 2 O 3 as conductor was sprayed on a metallic roller and the electrical stability during the long-term (300h) thermo-cycling (from RT to 300°C) was successfully tested.
1