Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Kristof J.P. Jacobs
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2024, ISTFA 2024: Conference Proceedings from the 50th International Symposium for Testing and Failure Analysis, 297-304, October 28–November 1, 2024,
Abstract
View Paper
PDF
In this paper, the failure analysis of InGaAs/GaAs-on-Si nanoridge laser diodes using the electron beam based nano-probing technique is presented. These III-V laser devices are fabricated using the nano-ridge engineering approach where the misfit dislocations generated during the growth of InGaAs/GaAs layers on silicon substrate are confined away from the active region. It is observed that the applied electrical stress causes degradation of electrical properties of the laser devices. We demonstrate the application of the electron beam induced current (EBIC) technique for failure analysis of nano-ridge lasers. This high-resolution technique helps to visualize the local distribution of the electric field in a nano-ridge p-i-n diode. The EBIC signal from the reference (electrically unstressed) device and the electrically stressed device is compared and hence can be used to identify the defective region. Furthermore, in-situ electrical stress experiments are performed for systematic analysis of the impact of electrical stress on the EBIC results.
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 155-159, November 12–16, 2023,
Abstract
View Paper
PDF
In this paper, we demonstrate three approaches to enhance the topographical contrast of infrared images obtained from lockin thermography (LIT). Infrared imaging, particularly LIT, is one of the extensively used techniques for failure analysis (FA) in the semiconductor industry. However, low-contrast topography images are obtained at room temperature from conventional LIT due to poor emissivity contrast in the devices and the limitation on the performance of the infrared camera. The gray-scale topographical contrast is improved by 85% when the device under test is heated from room temperature to 75°C, using a printed circuit board heater. Furthermore, a heat-assisted LIT approach is proposed and demonstrated at the die level on an electrically leaky silicon interposer sample. The topographical contrast and the signal intensity of the hotspot obtained are enhanced when compared to the classical LIT, which is performed at room temperature. Further, the dual LIT approach is developed to reduce the thermal budget of the heat-assisted approach. The hotspot amplitude and improved topography image are obtained from two consecutive lock-in measurements. In addition, the topography image from this technique is obtained by averaging several hundred frames from the camera for a period of ten minutes, which results in an image that is less susceptible to input noise levels. To increase the throughput of the FA process, quadrature lock-in thermography, a dual-purpose measurement technique is shown. A high-contrast topography image and the hotspot location are obtained from the same lock-in thermogram by performing trigonometric conditioning. The throughput from this approach is the same as the classical LIT technique.
Proceedings Papers
ISTFA2021, ISTFA 2021: Tutorial Presentations from the 47th International Symposium for Testing and Failure Analysis, i1-i109, October 31–November 4, 2021,
Abstract
View Paper
PDF
This presentation provides an overview of the tools and techniques that can be used to analyze failures in semiconductor devices made with 3D technology. It assesses the current state of 3D technology and identifies common problems, reliability issues, and likely modes of failure. It compares and contrasts all relevant measurement techniques, including X-ray computed tomography, scanning acoustic microscopy (SAM), laser ultrasonics, ultrasonic beam induced resistance change (SOBIRCH), magnetic current imaging, magnetic field imaging, and magneto-optical frequency mapping (MOFM) as well as time domain reflectometry (TDR), electro-optical terahertz pulsed reflectometry (EOTPR), lock-in thermography (LIT), confocal scanning IR laser microscopy, infrared polariscopy, and photon emission microscopy (PEM). It also covers light-induced voltage alteration (LIVA), light-induced capacitance alteration (LICA), lock-in thermal laser stimulation (LI-TLS), and beam-based techniques, including voltage contrast (VC), electron-beam absorbed current (EBAC), FIB/SEM 3D imaging, and scanning TEM imaging (STEM). It covers the basic principles as well as advantages and limitations of each method.