Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Ko Arisue
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 13-22, October 15–18, 2024,
Abstract
View Paper
PDF
For the safe operation of high temperature equipment, it is necessary to ensure creep rupture ductility of the components from the viewpoint of notch weakening. In this study, the effect of heat treatment conditions on creep rupture ductility was evaluated and its underlying metallurgical mechanism was investigated with using a forged Ni-based superalloy Udimet520. In order to improve the creep rupture ductility without lowering the creep rupture strength, it is important to increase both intragranular strength and intergranular strength in a balanced manner. For this purpose, it was clarified that 1) secondary γ' phase within grains should be kept fine and dense, 2) grain boundaries should be sufficiently covered by M 23 C 6 carbide by increasing its phase fraction, and 3) tertiary γ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate after solution treatment, stabilizing treatment and aging treatment conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 355-364, October 15–18, 2024,
Abstract
View Paper
PDF
In order to comprehensively assess creep damage of 18Cr-9Ni-3Cu-Nb-N steel (ASME SA-213 S30432), which is widely used in critical high-temperature regions of heat transfer tubes of ultrasupercritical (USC) boilers, our investigation centered on the σ phase. This phase undergoes formation and coarsening during prolonged thermal exposure. We developed a technique to estimate operational heating metal temperatures by analyzing average particle size of the σ phase (MLAS-EX). By extracting a certain number of σ phase from the largest particle size, it is possible to select the σ phase that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 461-472, October 15–18, 2024,
Abstract
View Paper
PDF
This study aims to elucidate the chemical compositions and microstructural factors that affect longterm creep rupture strength and creep rupture ductility using multiple heats of Gr.92 steel. Evaluating the reduction behavior in long-term creep rupture strength, we propose a relative creep rupture strength value, which is expressed as the logarithmic ratio of the estimated creep strength for each rupture time exceeding 10,000 hours, with 10,000 hours as the reference. Higher initial hardness correlates with greater pronounced strength reduction in the long-term regime. While smaller prior austenite grain sizes lead to greater reductions in creep rupture strength, this effect diminishes above 30 μm. However, no clear correlation was observed between Cr content and creep strength reduction in this study. Brittle creep ruptures with smooth test specimens were observed just below the extensometer ridge in the parallel section of test specimen, indicating notch weakening. Even in heats with excellent creep ductility, the amount of inclusions tended to be higher than in heats with lower creep ductility. Factors other than inclusions also seem to influence long-term creep ductility.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 80-89, October 21–24, 2019,
Abstract
View Paper
PDF
Long-term creep rupture tests up to 10 5 hours at 600℃ and 650℃ were carried out on mod.9Cr- 1Mo steel base metal and weldments from five different materials, consisting of various chemical compositions and heat treatments as well as welding conditions. As a result, positive correlations of creep rupture strength were clarified between the base metal and weldments from the same materials. Microstructural observations and thermokinetic calculations revealed that the strength correlations were attributed to the precipitation strengthening behavior of finely dispersed M 23 C 6 carbides and V-type MX carbonitrides, where their precipitation distribution characteristic in the fine-grained HAZ microstructures partially or almost entirely took over those in base metal. This finding implies that the long-term creep rupture strength of mod.9Cr-1Mo steel weldment might be able to be evaluated as long as the corresponding base metal strength is obtained.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 655-664, October 21–24, 2019,
Abstract
View Paper
PDF
18Cr-9Ni-3Cu-Nb-N steel is widely used for heat exchanger tubes such as super-heaters and reheaters of ultra-super critical power generation boilers. In this study, long-term creep rupture tests were carried out on 18Cr-9Ni-3Cu-Nb-N seamless steel tubes of 7 heat materials, and the specimens of 2 heat materials with different creep rupture strengths were observed by ultra-low voltage scanning electron microscope after creep rupture tests. The results of the investigation of the creep rupture specimens and the coverage ratios of M 23 C 6 on grain boundary were different. The cause of this was estimated to be the difference in B content between the 2 heat materials. Creep rupture tests with different final ST temperatures were also carried out using the same heat material, and it was revealed that the higher final ST temperature, the higher the creep rupture strength. As the final ST temperature is higher, the amount of Nb(C, N) solid solution in the matrix increases, and the amount of precipitation of NbCrN and M 23 C 6 increases during creep, therefore it is assumed that the creep rupture strength increases.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 429-439, October 11–14, 2016,
Abstract
View Paper
PDF
The influence of holding time during tempering on the long-term creep rupture strength of mod.9Cr-1Mo steel was investigated in this study, so as to elucidate proper heat treatment for boiler applications. Tempering was conducted at 770°C for 0.5h, 1h, 3h, 10h and 100h for the test materials, after re-normalization at 1050°C for 1h in all cases. Creep rupture tests were conducted at 600°C, and ruptured specimens were investigated to better understand the microstructural changes, including changes in the number density of precipitates, in order to observe and discuss their creep strength. All creep rupture test results for materials tempered within 10h exceeded the average creep strength of T91. Shorter tempering times such as 0.5h and 1h were clearly correlated with longer time to rupture at 600°C under 80MPa to 100MPa stress conditions. Reduction of area in creep-ruptured specimens decreased principally with lowered creep stress. Materials tempered for 0.5h and 100h showed the lowest reduction of area at 90MPa and 100MPa respectively, and their reduction of area recovered at lower than those stress levels. These stresses, showing minimum reduction of area, met inflection stress in the creep rupture strength curve.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1149-1159, October 11–14, 2016,
Abstract
View Paper
PDF
Large heat-to-heat variation of creep rupture strength in weldments of mod.9Cr-1Mo steels was observed in the creep rupture tests conducted for two different heats at 600°C and 650°C. One heat showed consistently lower time-to-rupture than the other for 130-60MPa at 600°C. Detailed microstructural investigations revealed that the number density of precipitates in the weaker heat was remarkably lower than that associated with the stronger heat through most of the creep region. Accordingly, heat-to-heat variation of creep rupture strength was attributed to the difference in the precipitate strengthening effects throughout creep. Equilibrium calculation predicted that the smaller phase fraction of M 23 C 6 and VN precipitates due to the lower content of chromium and lower ratio of nitrogen/aluminum in the weaker heat. However, given that long-term creep rupture strength at 650°C converged for the two heats, the microstructure including precipitates may settle into a similar level for subsequent longer hours even at 600°C.