Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Kiyohito Ishida
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 386-392, August 31–September 3, 2010,
Abstract
View Paper
PDF
A new Ni-base superalloy has been developed for Advanced Ultra Super Critical (A-USC) power plants operating above 750°C, targeting reduced CO 2 emissions through improved efficiency. While existing research focuses on 700°C-class materials, this study presents a novel alloy design for higher-temperature applications. Using the CALPHAD method, a prototype alloy (Ni-23Co-18Cr-8W-4Al-0.1C) was developed by eliminating Ti, Nb, and Ta to improve hot-workability while maintaining strength. The resulting alloy demonstrates twice the creep strength of Nimonic 263, with an estimated 10 5 h steam turbine creep resistance temperature of 780°C, marking a significant advancement in A-USC material capabilities.