Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Kendall J. Hollis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 768-774, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, 316 stainless was deposited by low-pressure plasma spraying under various conditions to obtain different coating structures and by cold gas dynamic spraying for comparison. The coatings were characterized by cross-sectional metallography to assess porosity, oxidation, particle flattening, and elemental composition. The samples were also subjected to flyer plate impact testing in a gas gun to determine their shock propagation and porosity compaction properties. Comparing the results with that of the reference sample shows the effect of deposition conditions on the dynamic behavior of the coatings.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 299-306, May 7–10, 2018,
Abstract
View Paper
PDF
Plasma sprayed zirconium (Zr) metal coatings onto uranium-molybdenum (U-Mo) alloy nuclear reactor fuel foils act as a diffusion barrier between the fuel and the aluminum fuel cladding. Neutron diffraction was performed to investigate the crystallographic phase composition, crystal orientations and lattice parameters of the plasma sprayed Zr and the U-Mo substrate. The neutron diffraction results show that the plasma sprayed Zr coating is crystalline, phase pure (alpha-Zr) and has preferred crystalline orientation likely due to directional solidification. Also, there is a slight (~0.01 Å for a direction and ~0.016 Å for c direction) increase in the plasma sprayed Zr lattice parameter indicating oxygen in the lattice and some residual thermo-mechanical strain. There is little or no modification of the underlying U-Mo following plasma spraying. In particular, there is no detectable allotropic transformation of the starting gamma-U (body-centered cubic) to alpha-U (orthorhombic). The unique neutron diffraction capabilities at LANL are well suited for nuclear fuel characterization offering distinct advantages over conventional X-ray diffraction and destructive metallography.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 654-660, May 11–14, 2015,
Abstract
View Paper
PDF
The measurement of the spatial distribution of coating thickness of thin coatings applied by thermal spraying can be challenging. For non-magnetic metallic substrates and coatings, X-Ray Fluorescence (XRF) was employed for measuring coating thicknesses in the range of 15 to 60 μm. XRF is used to measure the ratio of atomic fluorescence peaks for an element in the substrate to an element in the coating. With appropriate calibration, the ratio of peak intensities gives the coating thickness for the spot sampled. Mass gain and cross sectional metallography are compared to XRF to determine accuracies and sensitivities of the techniques for plasma sprayed coatings.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
Abstract
Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 153-158, May 5–8, 2003,
Abstract
View Paper
PDF
Coating porosity is an important parameter to optimize for plasma-sprayed ceramics which are intended for service in molten metal environments. Too much porosity and the coatings may be infiltrated by the molten metal causing corrosive attack of the substrate or destruction of the coating upon solidification of the metal. Too little porosity and the coating may fail due to its inability to absorb thermal strains. This study describes the testing and analysis of tungsten rods coated with aluminum oxide, yttria-stabilized zirconia, yttrium oxide, and erbium oxide deposited by atmospheric plasma spraying. The samples were immersed in molten aluminum and analyzed after immersion. One of the ceramic materials used, yttrium oxide, was heat treated at 1000°C and 2000°C and analyzed by X-ray diffractography and mercury intrusion porosimetry. Slight changes in crystal structure and significant changes in porosity were observed after heat treatments.