Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Kazuto Takai
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 955-958, May 11–14, 2015,
Abstract
View Paper
PDF
Solid resin rods including ceramics nanoparticles were fed successfully into a Rokide flame gun to create dense coated layers without micro cracks and pores applying for electric, magnetic and dielectric components. In this investigation, alumina particles of 170 nm in average diameter were dispersed into acrylic liquid resin at 40 % in volume fraction. The paste material was injected into an brass mold of φ4 ~ 200 mm in inner dimension and thermally cured through heating at 120 °C for 60 min. Formed solid rods were fed coaxially into an oxyacetylene gas flame by using the Rokide spraying system. Sprayed particles were collected in a water bath for microstructure observations by a scanning electron microscope and crystal phase analyses by an X-ray diffraction spectroscopy. Fine ceramics layer formations will be discussed systematically by the feeding speed of solid rods and gas flame condition of air pressure and oxygen pressure.