Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Kazumi Egota
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 811-817, May 11–14, 2015,
Abstract
View Paper
PDF
Aluminum nitride (AlN) ceramics is characterized with its high thermal conductivity and chemical stability. However, it was impossible to fabricate AlN coatings by conventional thermal spray processes directly from AlN feedstock powder due to thermal decomposition of AlN during spraying. In the last decade we were apple to fabricate the AlN coatings through the reactive plasma spraying process (RPS) in the atmospheric ambient. This study describes the way to fabricate high thermal conductivity plasma sprayed AlN coatings. The thermal conductivity of the AlN coatings was investigated by laser flash method. The as sprayed coating had very low thermal conductivity (2.43 W/m.K), compared to the AlN value. It is attributed to presences of high oxide content (Al 5 O 6 N, γ-Al 2 O 3 and α-Al 2 O 3 phases), low density (2.32 g/cm 3 ) and high porosity in the plasma sprayed coating (about 22%). Besides that, although the N 2 gas flow improved the nitride content, the thermal conductivity decreased gradually. It is related to the further increase of the coating porosity and decreasing its density with the N 2 gas. The influence of the process parameters on the thermal conductivity was investigated and to fabricate high thermal conductivity AlN coating adjusting the oxide content, the coating porosity and microstructure are the main factors. Very high thermal conductivity (about 95 W/m.K) atmospheric plasma sprayed AlN coating was fabricated. The coating consists of mainly AlN phase (more than 95% AlN), very small amount of oxide phases, low porosity (about 3%) with a sintered microstructure (nicked-shape sintered particles).