Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Kan Sun
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 115-119, October 30–November 3, 2022,
Abstract
View Paper
PDF
Hard functional and logic failures which are insensitive to temperature, voltage, or frequency have become increasingly difficult to debug in advanced technology nodes, especially when Photon Emission (PEM) analysis could not provide any leads and Dynamic Laser Stimulation (DLS) could not be used due to the nature of the failure (no pass/fail margin). Laser Voltage Imaging (LVI), which is an extension of the Laser Voltage Probing (LVP) technique, provides a visual map of active components that are toggling at a certain frequency. This technique is widely employed in scan chain debug due to its simplicity, efficiency, and accuracy. However, most of LVI applications in literature reviews only involve scan chain fault isolation. This paper will present alternative applications for LVI, apart from scan chain debug. One specific application is the debug of a broken signal path by sending a periodic signal as a stimulus to a GPIO pad and tracing the LVI signal through the path by frequency mapping. In this paper, the concept and methodology behind this fault isolation approach will be discussed in full detail. Furthermore, three case studies of different types of hard failures with different applications of LVI will also be presented: an IO functional failure, an ATPG (Automatic test pattern generation) SAF (Stuck At Fault) failure and a BSDL(Boundary scan description language) input interconnect failure, to illustrate how LVI could be deployed in fault isolation for those functional and logic hard failures.
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 352-354, October 30–November 3, 2022,
Abstract
View Paper
PDF
Photon Emission Microscopy (PEM) analysis is one of the most common used FA techniques to identify the root cause of failures within ATPG scan logic due to its ease of setup and less invasive nature. While conducting photon emissions, the device is made to operate in the fail mode by running a production test vector to look for anomalous emissions or hot spots that could narrow down the area of interest (AOI) for subsequent Physical Failure Analysis (PFA). However, if there is no clue from emission analysis in the case of a hard failure with no sensitivity to voltage, frequency, or temperature, FA debug will be challenging. This paper shows how PEM analysis success may be further improved through logic state circuit study using a DFT ATPG diagnostic platform. Logic state truth table and its relative test pattern will be built based on the diagnostic data using in-house scripts, and the test program can then be changed to the required condition of the circuitry. With the altered logic state, new emission data can be collected, which could potentially reveal new clues to the investigation.