Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
K.Y. Sastry
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 926-931, June 2–4, 2008,
Abstract
View Paper
PDF
This paper describes the influence of post-spray heat treatment parameters on mechanical properties of Ni-TiC composite coatings. Thin Ni-TiC composite coatings were produced by low pressure cold gas dynamic process (also referred as cold spray or kinetic spray process) on an Inconel alloy substrate. In the coating process, mechanically mixed micron-sized Ni-TiC powders (~50 µm) were injected into a de-Laval nozzle propelled by a supersonic gas stream to high velocity (>300 m/s) to impinge upon a substrate. The coatings are formed subsequently as the metallic particles are severely deformed plastically and bonded to both the substrate and to one another. However the tensile adhesion strength levels were determined to be in the range of 10-14 MPa. A subsequent post-spray heat treatment in vacuum was found to enhance the bond strength of the coated particles with the substrate due to good metallurgical bonding caused by diffusion mechanism.