Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
K.H. Yip
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 503-506, November 1–5, 2015,
Abstract
View Paper
PDF
This paper describes the debug and analysis process of a challenging case study from wafer foundry which involved a circular patch functional leakage failure that was induced from device parametric drift due to thicker gate oxide with no detection signal from inline monitoring vehicles. It highlights the need for failure analyst to always be inquisitive and to deep dive into the failure symptoms to value-add the fab in discovering the root cause of the failure in challenging situation where information is limited.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 318-321, November 9–13, 2014,
Abstract
View Paper
PDF
The case study in this paper describes how collaboration between customer design and test teams and a thorough FAB investigation triggered by a detailed electrical analysis using the Atomic Force Nanoprober (AFP) resulted in the effective resolution of a challenging implant related issue on LDMOS structure that caused yield loss. The quick success in this case has led to a shorter yield ramp cycle on this new product for mass production.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 388-390, November 9–13, 2014,
Abstract
View Paper
PDF
As the technology keeps scaling down and IC design becomes more and more complex, failure analysis becomes much more challenging, especially for static fault isolation. For semiconductor foundry FA, it will become even more challenging due to lack of enough information. Static fault isolation is the major global fault isolation methodology in foundry FA and it is difficult to access and trigger the failing signal detected by scan and BIST test, which is widely applied in modern IC design. Because, in most of the time, the normal two pin bias (Vdd and Vss) can only get the comparable IV result between bad unit and the reference unit for function related fail. There are two possibilities from reverse engineering perspective. Firstly, the defect location may not be accessed by the DC bias. Secondly, even if the defect can be accessed, but the defect induced current or voltage change is too small to be differentiated from the overall signal. So it will be concealed in the overall current. However, it is still possible for us to do global fault isolation for the second situation. In this paper, a unit with Iddoff failure was analyzed. Although, no significant IV difference was observed between failed and reference units, a distinct Photon Emission (EMMI) spot was successfully observed in the failed unit. Layout analysis and process analysis on this EMMI spot further confirmed the reality of the emission spot.
Proceedings Papers
ISTFA2013, ISTFA 2013: Conference Proceedings from the 39th International Symposium for Testing and Failure Analysis, 424-426, November 3–7, 2013,
Abstract
View Paper
PDF
It is difficult to simulate functional failures using static analysis tools, therefore, debugging and troubleshooting devices with functional failures present a special challenge for failure analysis (FA) work and often result in a root-cause success rate is quite low. In this paper, the application of advanced FIB circuit edit (CE) processes combined the static FA analysis yielded successful localization of a bipolar junction transistor (BJT) device soft failure. Additional FA techniques were incorporated within the FA flow, resulting in characterization of the electrical behavior of a suspected transistor and detection of an abnormal implant profile within the active area.