Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
K. Umemura
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2003, ISTFA 2003: Conference Proceedings from the 29th International Symposium for Testing and Failure Analysis, 282-287, November 2–6, 2003,
Abstract
View Paper
PDF
A novel technique for three-dimensional structural and elemental analyses using a dedicated focused ion beam (FIB) and scanning transmission electron microscope (STEM) has been developed. The system employs an FIB-STEM compatible sample holder with sample stage rotation mechanism. A piece of sample (micro sample) is extracted from the area to be characterized by the micro-sampling technique [1-3]. The micro sample is then transferred onto the tip of the stage (needle stage) and bonded by FIB assisted metal deposition. STEM observation of the micro sample is carried out after trimming the sample into a micro-pillar 2-5 micron squared in cross-section and 10 -15 micron in length (micro-pillar sample). High angle annular dark field (HAADF) STEM, bright field STEM and secondary electron microscopy (SEM) images are obtained at 200kV resulting in threedimensional and cross sectional representations of the microsample. The geometry of the sample and the needle stage allows observation of the sample from all directions. The specific site can be located for further FIB milling whenever it is required. Since the operator can choose materials for the needle stage, the geometry of the original specimen is not a limiting factor for quantitative energy dispersive X-ray (EDX) analysis.
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 413-418, November 14–18, 1999,
Abstract
View Paper
PDF
A novel backside-analysis technique has been developed to identify the locations of failing transistors in manufactured LSIs. Local gate doping depletion in p+ salicide gates of PMOSFETs, which reduces drain current, was visualized for the first time. Our method consists of backside etching and subsequent selective wet etching of the gate electrode. Si substrate material was removed with a highly selective Si etchant without damaging the gate-oxide film. After the gate-oxide film removal, a locally depleted gate was selectively etched using the same etchant. Since the etching rates of nondoped Si and n+ Si are much higher than that of p+ Si for the etchant, the depleted p+ gates were well defined. Through TEM observation, we found that a large grain lay on an active channel region of a PMOSFET. This led us to attribute the gate depletion to the difference in the impurity diffusion between large and small grains. This demonstration confirmed that our technique should be quite useful for identifying failing transistor locations in manufactured memory and logic LSIs.
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 449-453, November 14–18, 1999,
Abstract
View Paper
PDF
A new focused-ion-beam (FIB) micro(μ)-sampling technique has recently been developed to facilitate transmission electron microscope (TEM) specimen preparation, while allowing chips or wafer samples to remain intact. A deep trench is FIB-milled to dig out a small, wedge-shaped portion of the sample (or a microwedge) from the samples area of interest, leaving a small, brige-shaped portion (or a microbridge) to support the microwedge. A metal needle is then manipulated into position for lifting the microwedge, i.e., the μ-sample. FIB-assisted deposition (AD) is used to bond the needle to the μ-sample. FIB-milling of the microbridge then separates the μ-sample from the chip or wafer. The separated μ-sample is mounted onto a TEM grid and secured using FIB-AD. The μ-sample is then FIB-thinned further, to a strip of about 0.1 μm thick. All of the above steps are accomplished under vacuum in the FIB system. This design permits a reliable and user-friendly environment for TEM specimen preparation, while keeping chips or wafer samples intact. It also permits operators to repeat TEM inspection and FIB-milling so that precise areas of interest may be made available for TEM inspection. Both cross-sectional and plan view TEM μ-sampling are feasible.