Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Johns Oarethu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 129-134, October 30–November 3, 2022,
Abstract
View Paper
PDF
Thermal Laser Stimulation (TLS) is employed extensively in semiconductor device fault isolation techniques such as TIVA (Thermal Induced Voltage Alteration), OBIRCH (Optical Beam Induced Resistance Change), SDL (Soft Defect localization), CPA (Critical Parameter Analysis), LADA (Laser Assisted Device Alteration), and LVI (Laser Voltage Imaging), etc. To investigate the TLS effects on 7nm FinFET transistor parameters, several transistors of 7nm FinFET inline ET (Electrical Test) macros were tested while employing TLS of various energy values. The test was done in linear mode so that the joule heating caused by the electrical current would be minimized. The experimental results showed that both NFETs and PFETs experienced increased Ioff (Off current) and Sub_Vt_lin_slope (Subthreshold slope), and decreased Ion (On current) and Vt_lin (Threshold voltage) due to elevated temperature of the transistor from TLS. Higher laser power caused greater effects on transistor parameters. The temperature increase on a transistor by TLS depends on the amount of laser energy transferred to, absorbed by, and dispersed by the transistor area. Factors such as the efficient coupling of the SIL (Solid Immersion Lens) with the Silicon backside surface, the transistor size, and the local layout around the transistor will greatly affect the amount of heat delivered to a particular transistor, even while using the same laser power. Thus, setting the laser power for fault isolation with TLS should consider these factors. Our experimental results also showed that the alteration of transistor parameters under TLS was not permanent if the laser power was carefully selected. It should be noticed that during dynamic fault isolation, a transistor may be switching between off, linear mode, and/or saturation mode. The temperature increase on the transistor under TLS may be higher than anticipated due to joule heating if the transistor operation is not confined to the linear region only. Experiments on transistors operating in saturation mode under TLS can be the subject of future work. The results obtained from these experiments can still establish guidelines for laser power settings to be used in the related fault isolation techniques for devices manufactured at the 7nm node so as to achieve non-destructive fault isolation.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 317-322, November 10–14, 2019,
Abstract
View Paper
PDF
This paper describes an electrical and physical failure analysis methodology leading to a unique defect called residual EG oxide (shortened to REGO); which manifested in 14nm SOI high performance FinFET technology. Theoretically a REGO defect can be present anywhere and on any multiple Fin transistor, or any type of device (low Vt, Regular Vt or High Vt). Because of the quantum nature of the FinFET and REGO occurrence being primarily limited to single Fins, this defect does not impact large transistors with multiple FINs; moreover, REGO was found to only impact 3 Fin or less transistors. Since REGO can be present on any multi-FIN transistor the potential does exist for the defect to escape test screening. Subsequently a reliability BTI (Bias Temperature Instability) stress experiment by nanoprobing at contact level was designed to assess REGO’s potential reliability impact. The BTI stress results indicate that the REGO defect would not result in any additional reliability or performance degradation beyond model expectations.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 346-358, November 10–14, 2019,
Abstract
View Paper
PDF
This paper presents Electrical Failure Analysis (EFA) and Physical Failure Analysis (PFA) on a random time zero (t0) gate oxide defect within an IBM processor manufactured with a 14nm SOI (Silicon On Insulator) FinFET technology. The natures of the Functional Fail, the gate oxide defect, and the transistor characteristics are included. The impact of this gate oxide defect to product yield and performance, plus the extent to which it extends across the product chip, which includes passing circuits, is covered. Since chips, which may contain this defect, could be present within the entire product lifecycle, the reliability aspects of the defect at the transistor level were investigated. Among the various reliability stresses available for transistors, Constant Voltage Stress (CVS) Bias Temperature Instability (BTI) was chosen. CVS BTI stressing was able to be performed on both the NFETs and PFETs within the Inverter of the failing circuit, plus other identical reference circuits. The BTI stress nanoprobing is covered. This includes an overview of BTI stressing, confirming the nanoprobing system and electrical stress/test programs are adequate for BTI stressing, BTI stress methodologies for Inverters, plus the BTI stress results. The transistor level BTI stress results are discussed and compared to other published BTI literature. Finally, the reliability aspects of this gate oxide defect are discussed.