Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-14 of 14
John Siefert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 219-234, October 15–18, 2024,
Abstract
View Paper
PDF
The current research adopts a novel approach by integrating correlative microscopy and machine learning in order to study creep cavitation in an ex-service 9%Cr 1%Mo Grade 91 ferritic steel. This method allows for a detailed investigation of the early stages of the creep life, enabling identification of features most prone to damage such as precipitates and the ferritic crystal structure. The microscopy techniques encompass Scanning Electron Microscopy (SEM) imaging and Electron Back-scattered Diffraction (EBSD) imaging, providing insights into the two-dimensional distribution of cavitation. A methodology for acquiring and analysing serial sectioning data employing a Plasma Focused Ion Beam (PFIB) microscope is outlined, complemented by 3D reconstruction of backscattered electron (BSE) images. Subsequently, cavity and precipitate segmentation was performed with the use of the image recognition software, DragonFly and the results were combined with the 3D reconstruction of the material microstructure, elucidating the decoration of grain boundaries with precipitation, as well as the high correlation of precipitates and grain boundaries with the initiation of creep cavitation. Comparison between the 2D and 3D results is discussed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 316-327, October 15–18, 2024,
Abstract
View Paper
PDF
This research compares creep crack growth behavior of two heats of creep strength enhanced ferritic (CSEF) steel, grade 91. These heats represent extremes of creep damage susceptibility, one heat exhibiting low creep ductility and the other high creep ductility. Creep crack growth tests were performed with compact tension specimens and were monitored with direct current potential drop and optical surface measurements. Load line displacement was measured throughout the duration of the tests. Specimens were sectioned, mounted, and analyzed using optical and scanning electron microscopy to assess the presence of oxidation, micro-cracking, creep damage, and void density. Tests were performed over a range of initial stress intensities on the low ductility material to investigate the impact of creep ductility. Metallurgical evidence and test data for each crack growth test was assessed to evaluate crack growth behavior linked to creep crack growth parameter (C*) and stress/creep damage distribution in the vicinity of the crack.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 723-734, October 15–18, 2024,
Abstract
View Paper
PDF
Olefin furnaces contain gravity cast U-bend fittings from Fe-Ni-Cr alloys that can experience premature failures due to a combination of harsh service conditions. The fittings undergo steep temperature variations during startup and shutdown, outer diameter (OD) oxidation from furnace flue gases, and inner diameter (ID) carburization from process fluids. As a result, cracking often occurs along large solidification grain boundaries from interconnected networks of carbides and secondary phases. To address these degradation concerns, Wire Arc Additive Manufacturing (WAAM) is being used to produce a functionally graded fitting that provides increased oxidation, carburization, creep, and thermal fatigue resistance. Three welding wire compositions have been designed based on thermodynamic and kinetic modeling techniques to address the appropriate corrosion resistance and mechanical properties needed in the OD, Core, and ID regions of the U- bend fitting cross-section. A Fe-35Cr-45Ni-0.7Nb solid welding wire is being used for the Core section, and metal-cored welding wires based around this composition with additions of Si or Al are being used for the OD and ID sections, respectively. This study involved weldability evaluation focused on understanding the microstructures and potential additive manufacturing printability challenges associated with graded WAAM structures using these welding wires. To achieve this, Cast Pin Tear Testing (CPTT) was performed to evaluate solidification cracking susceptibility of the welding wires. Additionally, Scheil calculations were performed in Thermo-Calc software to predict solidification microstructures. To validate the results, SEM characterization was conducted on cast buttons of each welding wire to identify phases in the respective microstructures. These unique data will help inform WAAM design parameters needed to produce a Functionally Graded Material (FGM) that improves the lifetime of Fe-Ni-Cr U-bend fittings in olefin furnaces.?
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, October 15–18, 2024,
Abstract
View Paper
PDF
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2021) 179 (2): 19–22.
Published: 01 February 2021
Abstract
View article
PDF
Through a series of case studies, the benefits of micro x-ray fluorescence (XRF) over traditional XRF are demonstrated in the power generation industry for informing weld procedures, identifying root cause, and providing materials or component specifications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 235-245, October 21–24, 2019,
Abstract
View Paper
PDF
Modified 9Cr-1Mo steel (ASTM Gr.91) is widely used in components of fossil fueled power plants around the world today. This grade of steel has however been shown to exhibit significant variations in creep life and creep ductility, which has led to premature in-service failures. The aim of this work is to define potential metallurgical risk factors that lead to this variation in performance. To achieve this, a set of creep test samples that represent a wide range in this variation of creep behavior in this steel grade have been studied in detail. As a first stage in this characterization the macro-scale chemical homogeneity of the materials were mapped using micro-XRF. Understanding the segregation behavior also allows quantification of microstructural parameters in both segregated and non-segregated areas enabling the variations to be determined. For example this showed a significant increase in the number per unit area of Laves phase particles in high compared with low Mo content areas. To study the effect of MX particles on segregation a methodology combining SEM and TEM was employed. This involved chemically mapping the larger V containing particles using EDS in the SEM in segregated and unsegregated areas and then comparing the results to site-specific TEM analysis. This analysis showed that although the average size of the V containing samples is in the expected 0-50 nm size range, these particles in some samples had a wide size distribution range, which significantly overlaps with the M 23 C 6 size distribution range. This together with the segregation characteristics has important implications for determining meaningful quantitative microstructural data from these microstructurally complex materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 294-303, October 21–24, 2019,
Abstract
View Paper
PDF
In order to understand the microstructural evolution during service that 9Cr steels experience it is important to be able to quantify key microstructural parameters that define the characteristics of the secondary phases (e.g. precipitated phases and inclusions) and the steel matrix. The average size of M 23 C 6 , Laves phase and MX particles in these materials have been reported in many studies, however comparability between these studies is compromised by variations in technique and different/incomplete reporting of procedure. This paper provides guidelines on what is required to accurately measure these parameters in a reproducible way, taking into account macro-scale chemical heterogeneities and the statistical number of particles required to make meaningful measurements. Although international standards do exist for inclusion analysis, these standards were not developed to measure the number per unit area of hard particles that can act as creep cavity nucleation sites. In this work a standardized approach for measuring inclusions from this perspective is proposed. In addition the associated need to understand the segregation characteristics of the material are described, which in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
Abstract
View Paper
PDF
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 370-378, October 21–24, 2019,
Abstract
View Paper
PDF
In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various conditions. The essence of these efforts is presented in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 726-737, October 21–24, 2019,
Abstract
View Paper
PDF
Due to their excellent high temperature oxidation resistance, utilities worldwide are adopting advanced austenitic stainless steels (A-ASS) for critical plant components, such as heat exchangers, as they aim to achieve higher operating conditions. However, challenges may be encountered in developing life assessment and life management strategies for such components. This is because conventional methods used for life assessment, such as measuring steam side oxide scale thickness in ferritic and conventional austenitic material to predict tube metal temperature, may not be successfully applied to A-ASS. In such instances, tracking the formation and evolution of microstructural features during service, may offer a possible method to predict the temperature of these steels. For such metallurgy based lifing strategy to be successful, it is essential to develop a good understanding of microstructure evolution in these steels. In this work one heat of Super 304H, that has been creep tested at 600°C, 650°C and 700°C, with applied stress ranging from 110 to 340 MPa, is characterized using a combination of advanced characterization tools and image analysis methods. The amount of sigma phase formed at the gauge and grip sections of the samples is quantified and the methodology used to quantify this phase is presented. From the results, a time-temperature-transformation diagram for sigma formation is developed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
Abstract
View Paper
PDF
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2016) 174 (10): 22–25.
Published: 01 November 2016
Abstract
View article
PDF
3D laser microscopy is opening new areas of study for metallic alloys and coatings in power generation applications. This article describes some case studies where laser microscopy has augmented, and in some cases replaced, metallic alloy characterization using optical microscopy or scanning electron microscopy.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2014) 172 (1): 21–24.
Published: 01 January 2014
Abstract
View article
PDF
Development of wear-resistant hardfacing materials using powder metallurgy/hot isostatic pressing technology offers an alternative to today's cobalt-based materials and those that suffer delamination damage. Ongoing research and development at the Electric Power Research Institute (EPRI), detailed in this article, examines the application of wear-resistant hardfacing materials using the PM/HIP process. The hope is to eliminate weldability and residual stress challenges associated with some hardfacing alloys, as well as to provide a wider range of potential alloy solutions to reduce cobalt use and to address delamination issues with incumbent materials.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2012) 170 (1): 19–23.
Published: 01 January 2012
Abstract
View article
PDF
A powder metallurgy and hot isostatic pressing technology offers a new way to manufacture high pressure-retaining components for use in the power-generation industry.