Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
John Shingledecker
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2023) 181 (4): 14–18.
Published: 01 May 2023
Abstract
View article
PDF
Enhancement of the diffusion bonding process for the development of compact heat exchangers (CHXs) provides an energy efficient solution for high-temperature applications in advanced nuclear reactors and other technologies. However, available information is limited concerning the diffusion bonding (and manufacturing) of CHXs in high temperature applications and associated selection of bonded materials, bonding conditions, mechanical performance, and thermo-fluid characteristics. This article reviews the available knowledge and the ongoing research being conducted to address gaps in information and application.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1132-1144, October 21–24, 2019,
Abstract
View Paper
PDF
Advanced power systems that operate at temperatures higher than about 650°C will require nickel-base alloys in critical areas for pressure containment. Age-hardened alloys offer an additional advantage of reduced volume of material compared with lower strength solid solution-strengthened alloys if thinner tube wall can be specified. To date, the only age-hardened alloy that has been approved for service in the time dependent temperature regime in the ASME Boiler and Pressure Vessel Code is INCONEL alloy 740H. Extensive evaluation of seamless tube, pipe, and forged fittings in welded construction, including implant test loops and pilot plants, has shown the alloy to be fit for service in the 650-800°C (1202-1472°F) temperature range. Since, nickel-base alloys are much more expensive than steel, manufacturing methods that reduce the cost of material for advanced power plants are of great interest. One process that has been extensively used for stainless steels and solution-strengthened nickel-base alloys is continuous seam welding. This process has rarely been applied to age-hardened alloys and never for use as tube in the creep-limited temperature regime. This paper presents the initial results of a study to develop alloy 740H welded tube, pipe and fittings and to generate data to support establishment of ASME code maximum stress allowables.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2016) 174 (10): 22–25.
Published: 01 November 2016
Abstract
View article
PDF
3D laser microscopy is opening new areas of study for metallic alloys and coatings in power generation applications. This article describes some case studies where laser microscopy has augmented, and in some cases replaced, metallic alloy characterization using optical microscopy or scanning electron microscopy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
Abstract
View Paper
PDF
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2015) 173 (3): 24–27.
Published: 01 March 2015
Abstract
View article
PDF
The 10th Liège Conference on Materials for Advanced Power Engineering was held in September 2014. This article presents conference highlights, including the current state of European materials research for advanced power engineering applications; European multinational programs in this area; and critical research topics including creep-fatigue, new alloy development, and materials developments for gas turbines.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2014) 172 (1): 21–24.
Published: 01 January 2014
Abstract
View article
PDF
Development of wear-resistant hardfacing materials using powder metallurgy/hot isostatic pressing technology offers an alternative to today's cobalt-based materials and those that suffer delamination damage. Ongoing research and development at the Electric Power Research Institute (EPRI), detailed in this article, examines the application of wear-resistant hardfacing materials using the PM/HIP process. The hope is to eliminate weldability and residual stress challenges associated with some hardfacing alloys, as well as to provide a wider range of potential alloy solutions to reduce cobalt use and to address delamination issues with incumbent materials.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2012) 170 (1): 19–23.
Published: 01 January 2012
Abstract
View article
PDF
A powder metallurgy and hot isostatic pressing technology offers a new way to manufacture high pressure-retaining components for use in the power-generation industry.