Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
John P. Shingledecker
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 365-376, October 11–14, 2016,
Abstract
View Paper
PDF
Long-term creep tested specimens of the advanced austenitic stainless steel Super 304H were subjected to detailed metallographic analysis with an emphasis on the relationship between creep induced cavities (voids) and microstructural features. The creep specimens were tested between 873 and 973 K (600 and 700°C) at stresses between 110 and 340 MPa, with rupture times up to ~1.8 x 10 8 s (50,000 hours). To characterize damage, the distributions of creep cavities along the length of the gage section were determined and microstructural features associated with the cavities were investigated using optical microscopy and scanning electron microscopy.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 821-831, October 22–25, 2013,
Abstract
View Paper
PDF
A model based on a concept of “fraction of exfoliated area” as a function of oxide scale strain energy was developed to predict the extent of exfoliation of steam-side scale from boiler tube superheater loops. As compared with the Armitt diagram, which can be used to predict when scale damage and exfoliation would be likely to occur, a “fraction of exfoliated area” approach provides an estimation of mass of scale released and the fraction of tube likely to be blocked by the exfoliation. This paper gives results for the extent of blockage expected in a single bend of a superheater loop was predicted as a function of operating time, bend geometry, and outlet steam temperature under realistic service conditions that include outages. The deposits of exfoliated scale were assumed to be distributed horizontally the tubes bends. Three types of bends were considered: regular bends, short bends, and hairpin bends. The progressive increase in steam and tube temperatures along a single loop of superheater tubing and the ensuing variation of oxide scale thickness are considered. Numerical simulation results for a superheater loop made of TP347H austenitic steel indicated that tube blockage fractions larger than 50% are likely to occur within the first two years of boiler operation (with regularly scheduled outages) for outlet tube temperatures of 540-570°C, which is consistent with practical experience. Higher blockage fractions were predicted for tubes with hairpin bends than for tubes with regular bends, of length that are larger than five internal tube diameters. Finally, the blockage model presented can be used with some confidence to devise operating schedules for managing the consequences of oxide scale exfoliation based on projections of time to some critical blockage fraction for specific boiler operating conditions.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 213-242, August 31–September 3, 2010,
Abstract
View Paper
PDF
Advances in materials for power plants include not only new materials with higher-temperature capabilities, but also the use of current materials at increasingly higher temperatures. This latter activity builds on extensive experience of the performance of the various alloys, and provides a basis for identifying changes in alloy behavior with increasing temperature as well as understanding the factors that ultimately determine the maximum use temperatures of the different alloy classes. This paper presents results from an effort to model the exfoliation processes of steam-side oxide scales in a manner that describes as accurately as possible the evolution of strains in oxides growing inside small-diameter tubes subjected to large thermal gradients and to thermal transients typical of normal steam boiler operation. One way of portraying the results of such calculations is by plotting the evolving strains in a given oxide scale on an ‘Exfoliation Diagram’ (of the type pioneered by Manning et al. of the British Central Electricity Research Laboratory) to determine the earliest time at which the trajectory of these strains intersects a criterion for scale failure. Understanding of how such ‘strain trajectories’ differ among different alloys and are affected by the major variables associated with boiler operation has the potential to suggest boiler operating strategies to manage scale exfoliation, as well as to highlight the mode of scale failure and the limitations of each alloy. Preliminary results are presented of the strain trajectories calculated for alloys T22, T91, and TP347 subjected to the conditions experienced by superheaters under assumed boiler operating scenarios. For all three alloys the earliest predicted scale failures were associated with the increased strains developed during a boiler shut-down event; indeed, in the cases considered it appeared unlikely that scale failure would occur in any practically meaningful time due to strains accumulated during operation in a load-following mode in the absence of a shut down. The accuracy of the algorithms used for the kinetics of oxide growth appeared to be a very important consideration, especially for alloy TP347 for which large effects on oxide growth rate are known to occur with changes in alloy grain size and surface cold work.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 602-622, October 25–28, 2004,
Abstract
View Paper
PDF
Current state-of-the-art coal-fired supercritical steam power plants operate with high-pressure turbine inlet steam temperatures close to 600°C. The best of the recently developed and commercialized advanced 9-12Cr martensitic-ferritic steels may allow prolonged use at temperatures to about 620°C, but such steels are probably close to their inherent upper temperature limit. Further increase in the temperature capability of advanced steam turbines will certainly require the use of Ni-based superalloys and system redesign, as seen in the European programs that are pioneering advanced power plants capable of operating with 700°C steam. The U.S. Department of Energy (DOE) has recently undertaken a concerted effort to qualify ultra-supercritical boiler tubing and piping alloys for 720/760°C steam for increased efficiency and reduced emissions. It is, therefore, necessary to develop the corresponding USC steam turbine, also capable of reliable operation at such conditions. This paper summarizes a preliminary assessment made by the Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) of materials needed for ultra-supercritical (USC) steam turbines, balancing both technical and business considerations. These efforts have addressed an expanded portfolio of alloys, that includes austenitic stainless steels and alloys, in addition to various Ni-based superalloys for critical turbine components. Preliminary input from utilities indicates that cost-effective improvements in performance and efficiency that do not sacrifice durability and reliability are prime considerations for any advanced steam turbine technology.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
Abstract
View Paper
PDF
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1198-1212, October 25–28, 2004,
Abstract
View Paper
PDF
The demand for higher efficiency and reduced emissions in coal-fired power boilers will result in the use of higher steam temperatures and pressures. A significant materials effort is required to reach a target steam condition of 760°C/35MPa. These new Ultrasupercritical (USC) units will require the use of nickel-based superalloys. Long-term creep strength will be a determining factor in achieving the highest possible steam conditions. To this end, the creep strength of commercially available (Haynes 230), modified/controlled chemistry (CCA617/Maгco 617), and new (INCONEL 740) alloys, including weldments, are being investigated at Oak Ridge National Laboratory (ORNL). Creep tests at ORNL show that the CCA617 provides a significant improvement in strength over the standard alloy 617 at 650°C to possibly 750°C. The strength of alloy 230 is well characterized, thus the testing on 230 has focused on specific specimen configurations for evaluating the high temperature behavior of weldments. Creep testing on INCONEL alloy 740 has shown good strengths (higher than 230 or CCA617) that may meet the target steam conditions. Microstructural analysis by electron microscopy on aged and tested material is being used to further understand the structure-properties relationship in these materials and determine long-term stability of the microstructures.