Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
John G. Speer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 193-200, September 30–October 3, 2024,
Abstract
View Paper
PDF
Carbide free bainitic microstructures can be developed via different thermal processing routes, and the details affect the scale and morphology of the microstructural constituents. In this study, bainitic microstructures are formed by either a controlled cooling process or an austempering process to evaluate the relationship between microstructure and mechanical properties in a 0.2C - 2Mn - 1.5Si - 0.8Cr steel containing small amounts of Nb, Ti, B, and N, and the results are compared to a 4140 steel processed via quenching and tempering. The resulting microstructures are characterized with scanning electron microscopy. When compared to microstructures produced via austempering, microstructures produced with a controlled cool exhibit an increased variety of transformation products, specifically regarding size and distribution of martensite-austenite constituents within a lath-like bainitic ferrite matrix. Nanoindentation testing shows that different transformation products exhibit significantly different local hardness. In all (primarily) bainitic conditions tested for these materials, the martensite/austenite constituent exhibits the highest hardness, followed by the lath bainitic ferrite/retained austenite constituent. Granular bainite and coarse bainitic constituents exhibit the lowest relative hardness in the conditions where they are observed.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 229-237, September 14–16, 2021,
Abstract
View Paper
PDF
Precision cold-forging processes are used to produce near-netshape parts that may then be carburized. During carburization thermal cycles, abnormal grain growth (AGG) after cold forging is known to develop microstructures which limit fatigue strength. In the present study, a small 0.04 wt.% Nb addition was made to a low-alloyed AISI 4121 steel containing 0.3 wt.% Mo. Subcritically annealed specimens were cold rolled (to simulate cold forging) at selected reduction ratios up to 50%, heated according to a simulated gas carburizing cycle at 930 °C, and water quenched to produce a final martensitic microstructure. The number density of abnormally grown grains increased rapidly as the cold rolling reduction ratio increased from 0 to 10%. With a further increase in reduction ratio, the extent of AGG decreased and was absent in samples subjected to the maximum reduction ratio of 50%. The evolution of fine (Nb, Mo)(C,N) precipitates at various stages of processing was characterized by thermodynamic calculations and electron microscopy and compared to the occurrence of abnormal austenite grain growth. The significance of these results for controlling AGG and thus optimizing fatigue performance in commercially-produced cold-forged and carburized components is discussed.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 115-122, October 15–17, 2019,
Abstract
View Paper
PDF
Vacuum carburizing with high pressure gas quenching is increasingly employed to reduce near-surface intergranular oxidation and quenching distortion. It has also been shown to reduce processing times because it can be conducted at higher temperatures, up to 1100 °C. These temperatures, however, may cause austenite grain coarsening, making steel more susceptible to fatigue failure. This paper presents a study showing how microalloying carburizing steels with Mo and Nb improves resistance to austenite grain growth. The control of grain size is attributed to solute and precipitation effects.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005786
EISBN: 978-1-62708-165-8
Abstract
Austenitization refers to heating into the austenite phase field, during which the austenite structure is formed. This article highlights the purpose of austenitization, and reviews the mechanism and importance of thermodynamics and kinetics of austenite structure using an iron-carbon binary phase diagram. It also describes the effects of austenite grain size, and provides useful information on controlling the austenite grain size using the thermomechanical process.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
Abstract
Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties, and provides an overview of the important background and product characteristics with a focus on the automotive sheet steel application. It schematically represents the continuous annealing process, consequent phase-transformation behaviors, and forming-limit curves of Q&P steels. The article describes the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile testing at different strain levels using electron backscatter diffraction.