Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
John Bruley
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 120-123, November 1–5, 2015,
Abstract
View Paper
PDF
As semiconductor device scaling continues to reduce the structure size, device geometries are also changing to three dimensional structures such as finFETs, and the materials which compose the devices are also evolving to obtain additional device performance gains. The material change studied in this paper is the introduction of silicon germanium into the electrically active region of a finFET test structure. The paper demonstrates a quantitative energy dispersive X-ray spectroscopy transmission electron microscopy (TEM) technique through the use of blanket film calibration samples of known concentration characterized by X-ray diffraction. The technique is used to identify a test structure issue which could only be diagnosed with a technique having nanometer spatial resolution and atomic percent sensitivity. The results of the test structure analysis are independently verified by the complementary TEM electron energy loss spectroscopy technique.
Journal Articles
Journal: EDFA Technical Articles
EDFA Technical Articles (2014) 16 (1): 4–16.
Published: 01 February 2014
Abstract
View article
PDF
IBM engineers have developed a holographic imaging technique, called dual-lens electron holography, that provides high spatial resolution and field of view without compromising signal-to-noise ratio. This article reviews the basic principles of the new method and provides several examples of its use. The first few examples demonstrate the junction profiling capabilities of the new method which, in one case, helps to explain why shallow junction devices are made with raised source-drain regions. In the other examples, dual-lens holography is used for strain mapping, in one case, to study strain distributions in sigma-shaped SiGe devices, and in another, to provide evidence that stress memorization occurs in dislocations in the source-drain region of nFET devices.
Proceedings Papers
ISTFA2013, ISTFA 2013: Conference Proceedings from the 39th International Symposium for Testing and Failure Analysis, 152-158, November 3–7, 2013,
Abstract
View Paper
PDF
Transmission Electron Microscopy (TEM) and scanning TEM (STEM) is widely used to acquire ultra high resolution images in different research areas. For some applications, a single TEM/STEM image does not provide enough information for analysis. One example in VLSI circuit failure analysis is the tracking of long interconnection. The capability of creating a large map of high resolution images may enable significant progress in some tasks. However, stitching TEM/STEM images in semiconductor applications is difficult and existing tools are unable to provide usable stitching results for analysis. In this paper, a novel fully automated method for stitching TEM/STEM image mosaics is proposed. The proposed method allows one to reach a global optimal configuration of each image tile so that both missing and false-positive correspondences can be tolerated. The experiment results presented in this paper show that the proposed method is robust and performs well in very challenging situations.
Proceedings Papers
ISTFA2006, ISTFA 2006: Conference Proceedings from the 32nd International Symposium for Testing and Failure Analysis, 419-422, November 12–16, 2006,
Abstract
View Paper
PDF
The emergence of multiple core, high speed microprocessors in sub 90nm node technologies present challenges for defect localization, especially in SRAM logic circuits involving Array Built In Self Test (ABIST). Voltage sensitive, temperature sensitive and frequency sensitive soft defects in these ABIST logic circuits can spell the difference between pass and failure, especially for Silicon on Insulator (SOI) designs. High density SRAM arrays with ever shrinking critical dimensions in multiple core, high speed microprocessor designs dictate an increased number of ABIST logic circuits of complex hierarchical design. Scan chain diagnostics to pinpoint the failing scan latch logic circuit following ABIST testing frequently results in ever greater uncertainty; increased number of suspect circuits related to the failure. A case study analysis successfully applied to pinpointing a voltage sensitive logic circuit defect in a 90nm SOI design is described here, followed by root cause TEM analysis.
Proceedings Papers
ISTFA2003, ISTFA 2003: Conference Proceedings from the 29th International Symposium for Testing and Failure Analysis, 478-484, November 2–6, 2003,
Abstract
View Paper
PDF
As MOSFET device gate lengths shrink below the 130 nanometer node, the effects of short channel effects (SCE) and gate line edge roughness (LER) have an increasingly more pronounced affect on device performance [1-8, 10]. The 2001 International Technology Roadmap for Semiconductors (ITRS) predicts increasingly tighter critical dimensions (CD) control limits on LER from 2.7 nm in 2004 to 1.3 nm in 2010 [9,11]. As gate lengths shrink, resist etch processes emerge as the most significant contributor to LER [1-8, 11]. In addition, another contributing factor to SCE is junction implant defects. Examples of gate LER effects and junction defects in 130 nanometer node SOI SRAM MOSFET devices identified by sub-micron electrical characterization with analysis by high resolution transmission electron microscopy (TEM) are discussed.