Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Jianhui Xu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 335-340, October 24–26, 2017,
Abstract
View Paper
PDF
In the design of a downhole isolation tool for multi-stage fracturing in the oil and gas industry, a setting component, called slip, was used to set the tool in the casing prior to the hydraulic fracturing operation. The material of the slip is made of gray cast iron with surface hardening requirement. This study investigated the performance of slips treated by induction hardening versus flame hardening. The slip treated by induction hardening produced low hardness and insufficient affected layer. On the other hand, flame hardening generated satisfactory results of case hardening layer by 0.762 mm (0.030 in.) thickness with 50 HRC minimum hardness. The Type E graphite in the raw material was transformed to Type A in the flame hardening process, which is favored in the case hardened layer. The effect of different treatment processes on the affected layer and their microstructural response in gray cast iron was discussed in this study. The isolation tool using the slip treated by flame hardening, together with other proven components, showed successful performance of 82.7 MPa (12 ksi) pressure holding at 177 °C (350 °F) for high pressure and high temperature downhole applications.