Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
James Vickers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2024, ISTFA 2024: Conference Proceedings from the 50th International Symposium for Testing and Failure Analysis, 519-522, October 28–November 1, 2024,
Abstract
View Paper
PDF
This paper demonstrates that e-beam assisted device alteration (EADA) is a powerful, high-resolution technique for fault isolation debug for advanced technology nodes. A case study using this technique is reviewed and shows successful isolation of a defective single inverter. In addition, fundamental studies of ring oscillator behavior and device perturbations with e-beam exposure found clear correlations for electron beam exposure with NMOS/PMOS device parameters. Electron-hole pair generation in the device with beam exposure is likely the main component for the perturbation, but there may be other contributing factors including charging effects and/or heating.
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 164-167, November 12–16, 2023,
Abstract
View Paper
PDF
With the introduction of flip-chip technology, optical-based failure analysis techniques have played a critical role in many failure analysis (FA) laboratories. This is due to the unhindered access for photons to probe or emit from the transistor layer through the bulk silicon. Among the optical techniques, laser voltage imaging (LVI) and laser voltage probing (LVP), collectively called LVx, dominate because they directly expose the electrical activity of a given circuit or cell.
Journal Articles
Journal: EDFA Technical Articles
EDFA Technical Articles (2023) 25 (4): 28–34.
Published: 01 November 2023
Abstract
View article
PDF
A scanning electron microscope system measures voltage contrast on device-under-test surfaces. This article addresses a limited set of applications that rely on voltage contrast (VC) measurements in SEM systems, showing how VC measurements can probe electrical activity running at speeds as high as 2 GHz on modern active integrated circuits.
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 125-128, October 30–November 3, 2022,
Abstract
View Paper
PDF
Recently, electron beam probing (EBP) has had a resurgence in failure analysis communities due to its clear resolution advantage compared to optical techniques. This paper describes an approach for a detailed advanced logic e-beam probing system, capable of measuring both high bandwidth waveforms and frequency maps. An investigation of optimizing the signal-to-noise of the pulsed beam is presented. By minimizing the working distance and the use of quadrature signal analysis, the e-beam prober is capable of high bandwidth and high-resolution data with adequate signal-to-noise. The use of such system provides a scalable solution for electrical failure analysis for advanced logic integrated circuits.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 1-8, November 10–14, 2019,
Abstract
View Paper
PDF
Lock-in thermography (LIT) has been successfully applied in different excitation and analysis modes including classical LIT, analysis of the time-resolved temperature response (TRTR) upon square wave excitation and TRTR analysis in combination with arbitrary waveform stimulation. The results obtained by both classical square wave- and arbitrary waveform stimulation showed excellent agreement. Phase and amplitudes values extracted by classical LIT analysis and by Fourier analysis of the time resolved temperature response also coincided, as expected from the underlying system theory. In addition to a conceptual test vehicle represented by a point-shaped thermal source, two semiconductor packages with actual defects were studied and the obtained results are presented herein. The benefit of multi-parametric imaging for identification of a defect’s lateral position in the presence of multiple hot spots was also demonstrated. For axial localization, the phase shift values have been extracted as a function of frequency [4]. For comparative validation, LIT analyses were conducted in both square wave and arbitrary waveform excitation using custom designed and sample-specific stimulation signals. In both cases result verification was performed employing X-ray, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) as complementary techniques.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 197-203, November 10–14, 2019,
Abstract
View Paper
PDF
We report on using the voltage-contrast mechanism of a scanning electron microscope to probe electrical waveforms on FinFET transistors that are located within active integrated circuits. The FinFET devices are accessed from the backside of the integrated circuit, enabling electrical activity on any transistor within a working device to be probed. We demonstrate gigahertz-bandwidth probing at 10-nm resolution using a stroboscopic pulsed electron source.