Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Jacob E. Hammett
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Single Via Deprocessing Techniques to Enable Physical Analysis for Semiconductor Process Integration
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 253-255, November 6–10, 2005,
Abstract
View Papertitled, Single Via Deprocessing Techniques to Enable Physical Analysis for Semiconductor Process Integration
View
PDF
for content titled, Single Via Deprocessing Techniques to Enable Physical Analysis for Semiconductor Process Integration
Modern semiconductor devices are continuing to be scaled down and the complexity of the processes involved in producing the devices keeps increasing; in conjunction with this, sample preparation and analysis are increasingly important for accurately determining the sources of defects and failure mechanisms in terms of process integration. This paper discusses ways to characterize integration-driven defects using deprocessing techniques and cross-section imaging to obtain 3-D views of such defects. As an example, a single-via test structure is evaluated. The article focuses on the techniques used to deprocess the single-via structure using a combination of RIE, FIB, and wet etching to expose the single via while maintaining the integrity of the structure. The resulting 3-D view of the structure and associated defect allowed for improved understanding of the defect and its origin. This understanding enabled process optimization to minimize such defect formation.