Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
J.G. Speer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 220-226, September 30–October 3, 2024,
Abstract
View Papertitled, Microstructural Development and Fracture Behavior after Rapid Tempering in the Tempered Martensite Embrittlement Regime of 1045 Steel
View
PDF
for content titled, Microstructural Development and Fracture Behavior after Rapid Tempering in the Tempered Martensite Embrittlement Regime of 1045 Steel
Quenching and tempering (Q&T) allows a wide range of strength and toughness combinations to be produced in martensitic steels. Tempering is generally done to increase toughness, although embrittling mechanisms result in temperature ranges where strength and toughness may decrease simultaneously. Tempered martensite embrittlement (TME) represents one such mechanism, associated with the decomposition of retained austenite and precipitation of cementite during tempering, usually between 250 and 450 °C. The use of induction heating allows for time-temperature combinations, previously unobtainable by conventional methods, that have been shown to improve properties. The present work shows a beneficial effect of rapid tempering in alloy 1045, with an increase in energy absorption of about 50% when measured at room temperature via a three-point bending fracture test in the TME regime. Phase fraction measurements by Mössbauer spectroscopy showed that increased energy absorption was obtained despite essentially complete decomposition of retained austenite during tempering. Scanning electron microscopy (SEM) investigation of the carbide distribution showed refinement of the average carbide size of approximately 15% in the rapid tempered conditions. SEM characterization of the fracture surfaces of the rapid tempered three-point bend samples showed that, despite an increase in energy absorption in the TME regime, increased microscopic ductile fracture appearance was observed only at the highest test temperature.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 71-76, October 17–19, 2023,
Abstract
View Papertitled, The Effect of Retained Austenite and Nickel on the Rolling-Sliding Contact Fatigue of Carburized Steels
View
PDF
for content titled, The Effect of Retained Austenite and Nickel on the Rolling-Sliding Contact Fatigue of Carburized Steels
The objective of this work was conducted to investigate the influence of nickel (Ni) content and retained austenite on rolling-sliding contact fatigue (RSCF) life in carburized gear steel. In order to evaluate Ni and retained austenite effects, this study utilized carburized steel specimens of 4120 (0.13 wt pct Ni) and 4820 (3.38 wt pct Ni), which were subjected to RSCF testing. The specimens were gas carburized with a resulting case depth of approximately 1.3 mm, based on a hardness of 500 HV. The retained austenite was measured using x-ray diffraction at depths beneath the surface of 50, 250, 450, 650 μm. The 4120 specimens have a higher surface retained austenite content than the 4820. Specimens were surface ground to an average surface roughness of 0.2 μm to decrease the effect of as-carburized surface roughness on the fatigue life. The specimens underwent RSCF testing, with a surface contact stress of 2.5 GA and a slide to roll ratio of -20 pct, until a pit formed, as detected by an accelerometer. The pits that formed on the surface of the specimens were analysed with secondary electron microscopy, macrophotographs, and light optical microscopy. The pits that formed from the RSCF testing conditions were surface-initiated. The fatigue life of the 4820 specimens was higher than the fatigue life of the 4120 specimens, suggesting that the higher Ni level is beneficial to the fatigue life.