Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
J.-H. Ahn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 895-900, May 3–5, 2010,
Abstract
View Paper
PDF
The PAS method was used to produce W-ZrC and W-HfC composite powder, and the LVPS process technologies were used to create W composite coating layers. In addition, the mechanical properties, high-temperature resistance, and ablation characteristics of the W composite coatings were compared and analyzed for different types of carbides. For comparison and analysis, Vickers hardness, porosity, and adhesive strength were measured, and plasma torch tests were conducted. The use of the LVPS technologies led to successful production of W composite coatings (W-HfC; W-ZrC), approximately 1,000 μm or above in thickness. ZrC particles were observed in the layers of W-ZrC coating. The porosity was 3.59 % in W-HfC and 7.74 % in W-ZrC, indicating the W-HfC coating had a better pore quality than W-ZrC. Vickers hardness was approximately 120Hv higher in W-ZrC than in W-HfC due to the presence of ZrC particles in the W-ZrC coating. Adhesive strength was found to be nearly identical in both coatings. Results of the evaluation of high thermal resistance characteristics of the W composite coating materials showed that W-ZrC coating performed better in resisting high thermal conditions than W-HfC coating, due to the strengthening effects of ZrC particles in the layers and the generation of ZrO 2 phase with high levels of stability in high temperatures.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 562-566, May 4–7, 2009,
Abstract
View Paper
PDF
Arc spraying metal onto a master pattern is an emerging method for making molds and dies. The process, called arc spray metal tooling, involves several steps, which are shown in this paper. Three sheet metal forming dies of varying complexity were made to demonstrate and assess the process. Press tests were performed at a mold and die making facility. Arc-sprayed metal shells produced from carbon steel wire were found to have a tensile strength of approximately 23 kg/mm 2 , a Vickers hardness of 330 HV, and a dimensional accuracy of about ± 0.1 mm.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1217-1222, May 15–18, 2006,
Abstract
View Paper
PDF
Modification of the nozzle of the arc spray equipment was attempted in order to reduce microstructural defects of the spray-formed steel shells since these defects mainly degrade the overall properties of the spray-formed tools. Based on the in-flight particle analysis, a new nozzle design of a gas shrouding concept was proposed. Effects of design factors such as nozzle dimensions and process conditions was investigated by using statistical analysis methods. The results demonstrated that the oxidation of the spray-formed steel shells can be reduced to the one-third levels of the original ones with an optimized design.