Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
J. Wu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 793-798, May 4–7, 2009,
Abstract
View Paper
PDF
In this study, single splats of polyether ether ketone were plasma sprayed onto aluminum substrates that had been boiled, etched, or polished and then thermally treated, except for one etched substrate, to remove water from the surface. Splat morphology was viewed in a scanning electron microscope and splat-substrate interfaces were examined using TEM and focused ion beam imaging. The results show that PEEK splats have a poor level of contact on aluminum substrates that were boiled and those that were etched but not thermally treated. In contrast, specimens that had undergone thermal treatment to minimize the presence of water on the substrate surface exhibited high levels of contact at the splat-substrate interface with significantly less porosity.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003771
EISBN: 978-1-62708-177-1
Abstract
This article describes the metallurgy and microstructure of high-performance cobalt-base alloys. It discusses metallographic preparation procedures, including sectioning, mounting, grinding, polishing, etching, staining, and heat tinting. It examines the microstructure of cobalt alloys in cast, wrought, and powder metal forms, including magnetic alloys as well as several cobalt-base superalloys.
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 349-355, November 14–18, 1999,
Abstract
View Paper
PDF
Reliability of low standby current (Isb) CMOS circuits is impacted by extremely small non-fault resistive defects which, without compromising logic functionality or timing specifications, cause Isb currents well in excess of device specifications. A primary cause of high Isb, identified through failure analysis, is due to Crystal Originated Pits (COPs) defects, whereat thin oxide is more prone to electrical breakdown.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 641-646, May 25–29, 1998,
Abstract
View Paper
PDF
Impact performance of plasma spray coatings is usually evaluated by means of surface observation after impact action. As a matter of fact, the dynamic response characteristics of coatings in the course of impact action are also very important. In this paper, a method of response frequency spectrum analysis is developed for the impact evaluation of plasma spray coatings. An impact test machine, in which the impact load is generated by a pivot-rod-lever system, is specially designed, allowing both single impact test and repeated impact test. The frequency spectra of Cr2O3 ceramic coating and WC-Co17% alloy coating under single and repeated impact action are analyzed. The results show that there is an obvious relationship between the impact performance and the impact response frequency spectrum. Abrupt changes in the coating, such as appearance of surface cracks and surface damage, correspond the sudden changes of the response frequency spectrum.