Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
J. Tirillò
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 578-583, May 3–5, 2010,
Abstract
View Paper
PDF
In this work the high temperature mechanical properties of UHTC coatings deposited by plasma spraying have been investigated; particularly the stress-strain relationship of ZrB2 based thick films has been evaluated by means of 4-point bending tests up to 1500 °C in air. Results show that at each investigated temperature (500, 1000, 1500 °C) Modulus of Rupture (MOR) values are higher than the ones obtained at room temperature; moreover at 1500°C the UHTC coatings exhibit a marked plastic behaviour, maintaining a flexural strength 25 % higher compared to RT tested samples. The coefficient of linear thermal expansion (CTE) has been evaluated up to 1500 °C: obtained data are of primary importance for substrate selection, interface design and to analyze the thermo-mechanical behaviour of coating-substrate coupled system. Finally SEM-EDS analyses have been carried out on as sprayed and tested materials in order to understand the mechanisms of reinforcement activated by high temperature exposure and to identify the microstructural modifications induced by the combination of mechanical loads and temperature in an oxidizing environment.