Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
J. Shingledecker
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 516-529, October 11–14, 2016,
Abstract
View Paper
PDF
The impression creep test method using a rectangular indenter has been well established and the applicability of the technique has been supported by the test data for a number of metallic materials at different temperatures and stresses. The technique has proved to be particularly useful in providing material data for on-site creep strength assessments of power plant components operating in the creep regime. Due to these reasons, “standard” assessment procedures using the impression testing method are needed in order for the technique to be more widely used. This paper will first address some key issues related to the use of the impression creep test method, involving the data conversion method, typical test types and validity of the test technique etc. Then some recommendations on a number of practical aspects, such as the basic requirements of test rigs, “standard” specimen geometry, indenter dimensions, sampling procedures for scoop samples, specimen preparation, temperature and loading control, and displacement measurement, are briefly addressed. Finally, applications of the test data to assist with the risk management and life assessment programme of power plant components, particularly those with service-exposed materials, using data obtained from scoop samples, are described. Proposals for future exploitation and for improvement of the technique are addressed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 41-52, October 22–25, 2013,
Abstract
View Paper
PDF
The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). The program is made-up of two consortia representing the U.S. boiler and steam turbine manufacturers (Alstom, Babcock & Wilcox, Foster Wheeler, Riley Power, and GE Energy) and national laboratories (Oak Ridge National Laboratory and the National Energy Technology Laboratory) led by the Energy Industries of Ohio with the Electric Power Research Institute (EPRI) serving as the program technical lead. Over 10 years, the program has conducted extensive laboratory testing, shop fabrication studies, field corrosion tests, and design studies. Based on the successful development and deployment of materials as part of this program, the Coal Utilization Research Council (CURC) and EPRI roadmap has identified the need for further development of A-USC technology as the cornerstone of a host of fossil energy systems and CO 2 reduction strategies. This paper will present some of the key consortium successes and ongoing materials research in light of the next steps being developed to realize A-USC technology in the U.S. Key results include ASME Boiler and Pressure Vessel Code acceptance of Inconel 740/740H (CC2702), the operation of the world’s first 760°C (1400°F) steam corrosion test loop, and significant strides in turbine casting and forging activities. An example of how utilization of materials designed for 760°C (1400°F) can have advantages at 700°C (1300°F) will also be highlighted.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1059-1070, October 22–25, 2013,
Abstract
View Paper
PDF
Ultrasupercritical (USC) steam boiler and heat recovery steam generator (HRSG) technology is constantly evolving to improve efficiency and reduce emissions. Currently, temperatures are pushing beyond the capabilities of even the most advanced ferritic steels with some applications requiring nickel-based superalloys. Cost-effective design of these systems requires the application of a variety of alloys representing a range of cost/property trade-offs. CF8C-Plus is a cast austenitic stainless steel recently developed for application in high temperatures similar to those in power plants (600 - 900 °C) with creep strength comparable to several superalloys. This makes it an attractive alternative for those expensive alloys. EPRI, with assistance from PCC subsidiaries Special Metals and Wyman Gordon Pipes and Fittings, has produced and characterized two pipe extrusions nominally 5.25 inch OD x 0.5 inch wall thickness and 6 inch OD x 0.75 inch wall (13.3 x 1.3 cm and 15.2 x 1.9 cm), each about 1000 lbs, to continue to assess the feasibility of using a wrought version of the alloy in power piping and tubing applications. The mechanical properties from these extrusions show performance in the same population as earlier forging trials demonstrating capability exceeding several austenitic stainless steels common to the industry. Creep-rupture performance in these extrusions continues to be competitive with nickel-based superalloys.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2012) 170 (10): 20–22.
Published: 01 October 2012
Abstract
View article
PDF
Compared to traditional power plant materials, creep strength enhanced ferritic steels require new approaches to nondestructive examination and weld repair. The metallurgical complexity of these steels prompted EPRI to conduct research to define and/or improve the detection limits of ultrasonic testing techniques, explore novel electromagnetic techniques, evaluate the sensitivity and applicability of acoustic emission testing, and conduct studies on improved weld repair procedures.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 65-71, August 31–September 3, 2010,
Abstract
View Paper
PDF
For four decades, the Electric Power Research Institute (EPRI) has led groundbreaking materials research in the power industry, yielding significant cost savings across fossil, nuclear, and power delivery sectors. This paper outlines EPRI's fossil-related research, conducted through three major programs: Fossil Materials&Repair (P87 Base program), Materials-Fossil&Nuclear strategic program, and a supplemental program addressing key industry initiatives. EPRI's research focuses on understanding damage mechanisms, developing improved materials, enhancing life prediction methodologies, and advancing component degradation assessment. The paper highlights the synergy between EPRI's short- and long-term research initiatives, referencing several presentations from the 6th International Conference on Advances in Materials Technology for Fossil Power Plants. By showcasing EPRI's comprehensive approach to materials research, this overview demonstrates the institute's ongoing commitment to advancing power generation technology and efficiency.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 393-407, August 31–September 3, 2010,
Abstract
View Paper
PDF
The manufacture of large, complex components for ultra-supercritical and oxy-combustion applications will be extremely costly for industry over the next few decades as many of these components will be manufactured from expensive, high strength, nickel-based alloys casting and forgings. The current feasibility study investigates the use of an alternative manufacturing method, powder metallurgy and hot isostatic processing (PM/HIP), to produce high quality, and potentially less expensive components for power generation applications. Benefits of the process include manufacture of components to near-net shapes, precise chemistry control, a homogeneous microstructure, increased material utilization, good weldability, and improved inspectability.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 801-820, August 31–September 3, 2010,
Abstract
View Paper
PDF
Over the past two decades there has been considerable interest in the development of coatings with finer microstructures approaching nanometer scale because these coatings are more resistant to high-temperature oxidation and corrosion than their counterpart conventional coatings. Long-term cyclic oxidation behavior of nanocrystalline FeCrNiAl and NiCrAl coatings were evaluated at different temperatures and the results showed that ultra-fine grain structure promoted selective oxidation of Al during thermal exposure. The protective Al2O3 scale formed on these coatings with Al content as low as 3 wt.% and exhibited excellent spallation resistance during thermal cycling. The nanocrystalline NiCrAl coating showed significantly higher oxidation resistance compared to the conventional plasma sprayed NiCoCrAlY and PWA 286 coatings. However, the Al content in the nanocrystalline coatings was consumed in relatively short time due to inward and outward diffusion of Al. Variation of oxide-scale spallation resistance during thermal cycling and the rate of Al consumption between the nanocrystalline and plasma sprayed coatings are compared.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 3-19, October 25–28, 2004,
Abstract
View Paper
PDF
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732°C(1350°F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620°C (1150°F) and nickel-based alloys suitable up to 700°C (1300°F). In this project, the maximum temperature capabilities of these and other available high- temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This paper provides a status report on the progress to date achieved in this project.