Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-16 of 16
J. Oberste Berghaus
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 164-171, May 4–6, 2022,
Abstract
View Paper
PDF
High-velocity air-fuel (HVAF) is a combustion process that allows solid-state deposition of metallic particles with minimum oxidation and decomposition. Although HVAF and cold spray are similar in terms of solid-state particle deposition, slightly higher temperature of HVAF may allow further particle softening and in turn more particle deformation upon impact. The present study aims to produce dense Ti-6Al-4V coatings by utilizing an inner-diameter (ID) HVAF gun. The ID gun is considered a scaled-down version of the standard HVAF with a narrower jet, beneficial for near-net-shape manufacturing. To explore the potential of the ID gun in the solid-state deposition process, an investigation was made into the effect of spraying parameters (i.e., spraying distance, fuel pressure, and nozzle length) on the characteristics of in-flight particles and the attributes of the as-fabricated coating such as porosity, oxygen content, and hardness. Using online diagnostics to monitor temperature and velocity of in-flight Ti-6Al-4V particles is challenging due to exothermic oxidation reaction of fine particles, while larger particles are too cold to be detected from their thermal emission. However, DPV diagnostic system was successfully employed to differentiate the non-emitting solid particles from the burning ones. It was found that increasing air and fuel pressure of the ID-HVAF jet led to an increase of the velocity of the in-flight particles, and resulted in improved density and hardness of the as-sprayed samples. However, increasing the spraying distance had a negative effect on the density and hardness of the deposits. It was also observed that the phases of the Ti-6Al-4V deposits were altered by producing vanadium oxide due to the high temperature of the spray jet.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 356-363, May 4–6, 2022,
Abstract
View Paper
PDF
The exceptional properties of Ti-6Al-4V of high strength, lightweight, corrosion resistance and machinability make it one of the most widely used alloys in in the aerospace industry. Significant efforts are underway to establish powder bed additive manufacturing (AM) technologies for Ti-6Al-4V. There are also increasing attempts to use thermal and cold spray to build near net shape parts with buildup rates orders of magnitude higher than powder bed. Thermal spraying, such as HVOF, can oxidize and degrade the alloy due to the high processing temperature. Lowering the flame temperature through inert gas addition in full-size HVOF systems is a possible approach to retain solid state deposition of the feedstock particles, thereby limiting oxidation and detrimental α-case formation, while providing sufficient heat input for particle softening and plastic deformation at impact. Novel miniaturized HVOF systems, with spray jets of only a few millimetre in width, may further offer the possibility to improve the spatial resolution of the buildup for near net shape forming. The process parameter range for solid state deposition of Ti-6A-4V, using the liquid fuelled TAFA Model 825 JPid and the novel hydrogen fuelled Spraywerx ID-NOVA MK-6 with the addition of nitrogen will be discussed. Build-ups at over 80% deposition efficiency generally yield as-sprayed porosities below 3% and hardness above 200 HV100gf. Attainable microstructures and oxygen content as a function of spray parameters are delineated. Recrystallization and beta annealing of selected samples lowered the residual porosity and created equiaxed α and intergranular ß-phases. Ultimate tensile strengths of up to 1100 MPa were attained, however, at limited elongation.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 409-414, May 4–7, 2009,
Abstract
View Paper
PDF
In this study, suspension plasma spraying is used to deposit pseudo eutectic alumina-yttria stabilized zirconia as a potential thermal barrier coating. Process variables including feed rate, powder size, and plasma gas composition were altered to determine the influence of spray parameters on the formation of phases in the composite coating. The most significant variable was found to be the auxiliary gas. The gas influences the formation of phases primarily through its effect on in-flight particle velocity.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 171-177, June 2–4, 2008,
Abstract
View Paper
PDF
Metal-supported solid oxide fuel cells (SOFC) composed of a Ce 0.8 Sm 0.2 O 2-δ (SDC) electrolyte layer and Ni- Ce 0.8 Sm 0.2 O 2-δ (Ni-SDC) cermet anode were fabricated by suspension thermal spraying on Hastelloy X substrates. The cathode, a Sm 0.5 Sr 0.5 CoO 3 (SSCo)-SDC composite, was screen-printed and fired in-situ. The anode was produced by suspension plasma spraying (SPS) using an axial injection plasma torch. The SDC electrolyte was produced by high-velocity oxy-fuel (HVOF) spraying of liquid suspension feedstock, using propylene fuel (DJ- 2700). The emerging technology of HVOF suspension spraying was here explored to produce thin and low-porosity electrolytes in an effort to develop a cost-effective and scalable fabrication technique for high-performance, metal-supported SOFCs. In-flight particle temperature and velocity was measured for a number of different gun operating conditions and standoff distances and related to the resulting microstructures. At optimized conditions, this approach was found to limit material decomposition, enhance deposition efficiency and reduce defect density in the resulting coating, as compare to previous results reported with SPS. Produced button cells showed highly promising performance with a maximum power density (MPD) of 0.5 Wcm -2 at 600°C and above 0.9 Wcm -2 at 700°C, with humidified hydrogen as fuel and air as oxidant. The potential of this deposition technique to scale-up the substrate size to 50 X 50 mm was demonstrated.
Proceedings Papers
Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina Zirconia Ceramics
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 244-249, June 2–4, 2008,
Abstract
View Paper
PDF
Suspension Plasma Spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using extra small particles as compared to conventional thermal spraying. Suspension spraying involves, atomization, solvent evaporation and melts consolidation, which can cause substantial complexity in the system. Using feedstock mixtures for composite coatings, such as alumina and zirconia, intricacy of the system increases even more. There is consequently a need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/ 8 wt% yttria stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated by using Taguchi design of experiment (DOE). The microstructural features include microcracks, porosities and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e. temperature and velocity were also measured. The role of the porosity in this multi-component structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1332-1338, June 2–4, 2008,
Abstract
View Paper
PDF
Mullite coatings (3Al 2 O 3 ·2SiO 2 ) were deposited by suspension thermal spraying of micron-sized (D50 = 1.8 µm) feedstock powders, using a high-velocity-oxy-fuel gun (HVOF) operated on propylene (DJ-2700) and hydrogen fuels (DJ-2600). The liquid carrier employed in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to coatings with low porosity and fine and homogeneous porosity distribution, making this process potentially suitable for creating thin layers with low gas permeability. In-flight particle states were measured for a number of spray conditions of varying fuel-to-oxygen ratios and standoff distances and related to the resulting microstructure, stoichiometry, phase composition (EDS, SEM, XRD) and hardness (VHN 300gf) of the coatings. In an attempt to retain the crystalline phase in the coatings, HVOF operating conditions were varied to limit in-flight particle melting. However, fully crystalline coatings were only obtained by gradually heating the coating during deposition to temperatures above 400°C.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 627-632, May 14–16, 2007,
Abstract
View Paper
PDF
Al 2 O 3 -ZrO 2 composite coatings were deposited by suspension thermal spraying of submicron feedstock powders. The suspensions were injected internally into a Mettech Axial III plasma torch and a Sulzer-Metco DJ-2700 HVOF gun. The different spray processes induced a variety of structures ranging from finely segregated ceramic laminates to alloyed amorphous composites. Mechanisms leading to these structures are related to the feedstock size and in-flight particle states. Compositionally segregated crystalline coatings, obtained by plasma spraying, showed the highest hardness of up to 1150 Hv 0.3 , as well as the highest abrasion wear resistance (ASTM G65). The HVOF coating exhibited the highest erosion wear resistance (ASTM G75), which was related to the toughening effect of small dispersed zirconia particles in the alumina-zirconia alloyed matrix. The HVOF microstructures also led to low thermal diffusivity, due to high amorphous phase content and limited particle bonding.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 709-714, May 15–18, 2006,
Abstract
View Paper
PDF
Nanostructured WC-12%Co coatings were deposited by suspension plasma spraying of submicron feedstock powders, using an internal injection plasma torch. The liquid carrier employed in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to thin coatings with a fine surface finish. A PEI (polyethylene-imine) dispersant was used to stabilize the colloidal suspension in an ethanol carrier. In-flight particle states were measured for a number of operating conditions of varying plasma gas flow rates, feed rates and standoff distances, and related to the resulting microstructure, phase composition (EDS, SEM, XRD) and Vickers hardness. High in-flight particle velocities, in excess of 800 m/sec, were generated, leading to dense coatings. It was observed that the coating quality was generally compromised by the high temperature and reactivity of the small particles. To compensate for this shortcoming, the suspension feed rate was adjusted, thereby varying the thermal load on the plasma. Results showed that a slightly larger agglomerate size, in conjunction with low particle jet temperatures, could somewhat limit the decomposition of WC into brittle W2C/W3C and amorphous cobalt containing binder phases.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1463-1466, May 15–18, 2006,
Abstract
View Paper
PDF
The increasing use of HVOF (high-velocity oxy-fuel) coatings to replace hard chrome plating was initially motivated by the environmental and health risks associated with hexavalent chromium (Cr 6+ ) emissions during the plating process. Following performance optimization and proper coating selection, it has been found that the potential increase in performance and the cost/process-time reduction offered by the HVOF process often justifies its application. Recently, the use of Cr-containing alloys processed by HVOF has drawn attention to the potential release of Cr 6+ during heating of metallic chromium. For instance a new California regulation for airborne toxic control measures to reduce emission of hexavalent chromium from thermal spraying is in preparation. The present study focused on monitoring operator exposure during the HVOF spraying of WC-10%Co-4%Cr. The spraying was performed using a JP-5000 HVOF gun in a spray room in which a ventilation flow rate of 10,000 scfm was imposed. Air sampling was taken in the spray room as well as in the adjacent control room in accordance with the NIOSH 7300 and 7600 standard methods. A portable sampler attached on the operator’s chest was also used to monitor the operator exposure during a typical workday. Results indicate that even though metallic fumes of Co and Cr are present in the spray room during spraying, the hexavalent form Cr 6+ is not detected. It was concluded that an operator entering the spray room for a limited amount of time with the gun in operation would be exposed to only low fume levels that can still be reduced by wearing an appropriate respiratory mask.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 486-492, May 2–4, 2005,
Abstract
View Paper
PDF
For solid fuel cell application, thin electrolyte is needed for novel materials that allow reducing their operating temperature. The influence of what called ‘the thermal management of the coating and the substrate’ is discussed. In particular, influence of substrate temperature and the nature of the substrate. It was found that adequate control of the coating and substrate temperature, together with an equivalent substrate/coating thermal expansion coefficients (CTE) are the key-factor to successfully obtain an SDC nanosized thin and dense coating free of cracks.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 512-518, May 2–4, 2005,
Abstract
View Paper
PDF
Plasma spraying of ceramic nano-powders suspended in a liquid carrier medium is an emerging technology, which allows the formation of thinner coatings with microstructures more refined than conventional plasma spraying. An external injection system, where the suspension enters the plasma jet radially, is installed on a F4-Sulzer Metco dc torch for the production of nanostructured Al 2 O 3 and ZrO 2 coatings. The effect of injection parameters, such as initial droplet diameter, droplet velocity and suspension flow rate is studied. The suspension droplets are continuously generated through an exchangeable micron-sized nozzle with a superimposed pulse of variable ultrasonic frequency. The heat transfer from the plasma to the liquid feed is optimized at high droplet velocity, moderate counter-current injection angle and flow rates not exceeding a threshold value, which depends on the plasma enthalpy and the latent heat of the suspension medium. A significant effect of initial droplet size (220 – 500 µm) or solid concentration (5 – 15 %) is not observed. In-flight particle states are measured for different plasma conditions, and are related to the resulting microstructures by SEM and XRD. High particle temperatures give rise to a refinement in crystallite size, while the particle velocities govern the deposition efficiencies and porosity levels. The results show that the particles follow closely the gas flow in the free stream, as well as in the stagnation boundary layer close to the substrate by virtue of their limited inertia. The prominent difference in microstructure between highly porous alumina and very dense zirconia coatings is explained in terms of particle impact velocities, which are simulated for typical operating conditions as a function of particle size and free-stream gas velocity.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 594-599, May 2–4, 2005,
Abstract
View Paper
PDF
Tungsten particles were sprayed by a novel plasma torch with hybrid water-gas stabilization (WSP®-H). Several spraying parameters were varied – arc current, argon flow rate, carrier gas flow rate and spraying distance. The temperature and velocity of the individual particles were monitored by the DPV 2000 optical sensor. Individual splats were collected on polished stainless steel substrates and analyzed by SEM to assess their melting, flattening and/or fragmentation. These features were correlated with the basic in-flight particle characteristics and conditions for production of dense coatings were sought for. Significant dependence of the splats morphology on spraying parameters was found, and important improvement of particle melting at WSP-H over conventional water stabilized plasma torch (WSP) was registered.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 830-835, May 2–4, 2005,
Abstract
View Paper
PDF
A novel material has been used for plasma spraying by WSP. The material is composed of three main phases, namely corundum (aluminum oxide), baddeleyite (zirconium oxide), and glassy phase (silicon oxide). The material is a refractory and exhibits very high hardness, extremely high abrasion resistance, and chemical resistance. Conventionally, the material is fabricated by melt casting and machining. Cast tiles of the material were ground and sieved to obtain the right powder cut size for plasma spraying by water stabilized plasma torch (WSP). Both dense coatings and free standing parts were achieved with the new material, which sprays very well with WSP. Spraying parameters were varied and molten particles were monitored in flight by DPV 2000. The coatings exhibit very low porosity and high hardness. The as-sprayed material is mostly amorphous with some nanocrystalline grains of aluminum and zirconium oxide present. The phase composition of the as-sprayed material is thus different from that of the feedstock material, which is mostly crystalline with a small fraction of amorphous silica glass. The microstructure of the newly sprayed material was studied by electron microscopy (SEM, TEM) and is very complex. Upon annealing, the as-sprayed material crystallizes around 950ºC. This result and other thermal properties were measured by TMA and DTA. The ease of plasma spraying and the coating properties make this material a suitable candidate for many industrial applications.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1235-1241, May 2–4, 2005,
Abstract
View Paper
PDF
Basalt, an abundant and inexpensive natural raw material, is a glass-ceramic with good abrasion-wear resistance and chemical stability. Traditionally cast-shaped into flag stones, pipe linings and even fibrous composites, basalt can be processed by thermal spraying, potentially yielding highly dense coatings with few defects. Such overlays can seal base materials for wear applications in corrosive environments. Basalt coatings are produced by a number of common thermal spray techniques, including water-stabilized plasma spraying (WSP), high-velocity oxy-fuel (HVOF) and conventional air plasma spraying (APS). In-flight particle temperature and velocities are monitored with a particle diagnostic system (DPV 2000). Using different feedstock size cuts, the attainable ranges of particle states are delineated. Spray parameters are selected for each of the processes, based on deposition efficiency and porosity criteria. For typical conditions, particle velocities vary from 100 m/sec for WSP to 800 m/sec with HVOF. The microstructure and composition of the coatings are evaluated by scanning electron microscopy (SEM) and EDS-SEM. Crystal phase analysis is performed by X-ray diffraction (XRD). Abrasion resistance (ASTM G-65) and hardness (Vickers) of the as-sprayed coatings are compared. The microstructures and tribological properties are related to the particle size, temperature and velocity distributions, which are distinctly different for each process.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1292-1297, May 2–4, 2005,
Abstract
View Paper
PDF
Individual particles of various ceramic materials sprayed by water stabilized plasma torch (WSP) were characterized in flight by an optical sensing device DPV-2000. Temperature, velocity, and diameter of individual particles were measured at the center of particle plume and maps of the particle plume cross-section were acquired as well. Plasma jet and consecutively particle plume of the WSP torch is much larger compared to gas stabilized torches and even larger than the maximum span of the DPV-2000 sensing head. In summary, temperatures of particles varied from 2000 to 2600°C and their velocities from 60 to 140 m/s depending on the powder feedstock cut size, particle density, feeding distance, spraying distance, and feed rate. The last three parameters were varied to study their effect on the particle states and their distribution in the plasma jet and to correlate these results with selected properties of the corresponding coating. Some of the spraying parameter effects are difficult to interpret, nevertheless, general trends have been established.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1434-1440, May 2–4, 2005,
Abstract
View Paper
PDF
Nanostructured coatings of Al 2 O 3 and ZrO 2 (1.5% Y 2 O 5 ) are produced by suspension plasma spraying, introducing the liquid feedstock internally into the central part of three converging plasma jets of a Mettech Axial III torch (Northwest Mettech Corp.). Spraying nanosized ceramic powders in a liquid carrier can yield thinner coatings with more refined microstructures than conventional plasma spraying. In-flight particle states are measured for a number of plasma conditions of varying torch current, gas flow rates and compositions (Ar, H 2 , N 2 ), and related to the resulting microstructure and phase composition in the coatings, as determined by EDS, SEM and XRD. Results show that particle velocities up to 600 m/sec can be reached, yielding high impact velocities and cooling rates. Some comparison is made to previous work performed using external injection of a suspension droplet stream into a conventional dc plasma flame. At optimized conditions, dense γ-Al 2 O 3 deposits with an average crystallite size below 30 nm are obtained at deposition efficiency above 80%, which was not previously attainable. Eutectic alumina-zirconia composite coatings with a finely layered lamellar structure are also realized. The laminates have potential advantages as thermal barrier coatings with beneficial properties arising from nano-composite components.