Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
J. Latokartano
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 210-216, May 11–14, 2015,
Abstract
View Paper
PDF
Laser-assisted cold-spray has been recognized for over a decade as a technique capable of depositing high quality coatings. By laser heating (and hence softening) the surface being coated, deposition can occur at particle velocities lower than those normally associated with the cold spray process. This can be used to increase deposition rate. However, it can also be used to facilitate the deposition of higher hardness material combinations, normally more out of the reach of the conventional cold spray process. Laser heating can also reduce the requirements of the process on gas usage and gas heating for a given combination, making it more cost-effective. In the work reported below, the capability of a novel co-axially laser-assisted system (COLA) to deposit higher hardness materials, relevant to a range of different industrial applications, has been evaluated. This system can be retrofitted to conventional cold spray equipment.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1189-1192, May 15–18, 2006,
Abstract
View Paper
PDF
High power diode lasers (HPDL) at the level of ? 6 kW are efficient cladding tools in heavy engineering applications where thick (up to 5 mm) wear and corrosion resistant coating layers are required. Large beam geometry makes possible the overlap of thick 20 mm wide cladding tracks side by side without coating defects. Compact size and closed cooling water circulation enable HPDL cladding process to take place also at a site of new or worn high-value machine parts, which have worn in operation or been damaged already during overseas transportation. Instead of moving parts of several tons’ weight, it would be perhaps more cost efficient to transport HPDL cladding unit.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1074, May 2–4, 2005,
Abstract
View Paper
PDF
Laser cladding is a surface treatment technology in which thick, dense and metallurgically adhered metallic layers are deposited on various structural steels with relatively low heat input, high accuracy and reproducibility. Laser cladding processes used in industrial cladding are largely based on the use of CO 2 or Nd:YAG lasers. High power diode lasers (HPDL) with rectangular beam spots are regarded as ideal laser sources for laser cladding processes, due to their compact size, high electrical to optical efficiency, easy operation, and low investment and running costs. In laser cladding of large surface areas, the affectivity of the laser cladding process becomes more important, i.e. high laser powers, wide laser beam spots, and high coating material feedrates are regarded as beneficial. In order to optimise the cladding process for such applications, special attention has to be put on devices used to deliver the coating power to the process. In the present work, various parameters in effective HPDL cladding are described and new approaches to optimised HPDL cladding process are described. The performance of a new HPDL cladding powder delivery nozzle will be presented and discussed. Abstract only; no full-text paper available.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 208-212, March 4–6, 2002,
Abstract
View Paper
PDF
This paper demonstrates the use of an articulated robot in a plasma spraying operation for gas turbine transition ducts. A 3D model of the coating cell and workpiece plays a key role in the application, facilitating off-line programming and the verification of process parameters prior to spraying. In the spray experiments, a YSZ coating was applied to a NiCr bondcoat and subsequently characterized based on microstructure and hardness. The results were then used to set the injection parameters and travel path for the actual component. Paper includes a German-language abstract.