Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
J. Jansen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 163-166, May 3–5, 2010,
Abstract
View Paper
PDF
Zn, Zn-Al and Zn-Mg coatings have been produced by cold spraying. By careful tuning alloy compositions and spray conditions, dense coatings are produced with a hardness of 200 HV0.01 that are up to four times harder than pure bulk Zn, thus meeting the requirements for print applications. These new developments open opportunities for producing harder and more wear resistant coatings, which may allow for the production of larger number of copies without compromising quality.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 553-558, May 5–8, 2003,
Abstract
View Paper
PDF
Microplasma spraying process provides deposition of coatings on small sizes parts and components. An investigation into the process of production and properties of microplasma coatings from bioactive ceramics (hydroxyapatite, tricalcium phosphate and fluorinoapatite) was carried out. Bioactivity of the coatings was tested in vitro by estimation of growth and differentiation of osteogenic cell.